Analysis in One Variable MTH102

Assignment 7

Solutions to Assignment 7

(2 marks) 1. Consider the functions $f_n(x) = 2^{2n}x^n(1-x)^n$. Is the sequence (f_n) uniformly convergent in [0, 1]?

Solution: We note that

$$f_n(x) = 2^{2n} x^n (1-x)^n = y^n$$

where y = 4x(1-x).

If x = (1/2) - (1/k) for some positive integer $k \ge 2$, then

$$x(1-x) = \left(\frac{1}{2} - \frac{1}{k}\right) \cdot \left(\frac{1}{2} + \frac{1}{k}\right) = \frac{1}{4} - \frac{1}{k^2}$$

Hence, y = 4x(1-x) < 1. Thus, the sequence $(y^n)_{n>1}$ converges to 0.

It follows that $(f_n(x))_{n\geq 1}$ converges to 0 for x = (1/2) - (1/k) for $k \geq 2$. Note also that $((1/2) - (1/k))_{k\geq 1}$ converges to (1/2).

On the other hand, it is clear than $f_n(1/2) = 1$ for all n.

Thus, the limit function is *not* continuous at x = (1/2). However, the functions $f_n(x)$ are continuous functions in [0, 1]. It follows that $(f_n)_{n\geq 1}$ is not uniformly convergent in any interval containing (1/2).

2. Show that each of the following the series gives a continuous function in |x| < 1.

(1 mark)

(a) $\sum_{n=0}^{\infty} \frac{1}{n+1} x^n$.

Solution: The $(1/(n+1))_{n\geq 0}$ sequence is bounded by 1. Hence as seen in the notes the power series converges uniformly for |x| < r for any r < 1. Thus it gives a continuous function in |x| < 1.

(1 mark) (b)
$$\sum_{n=1}^{\infty} \frac{n}{1+n} x^n$$

Solution: The $(n/(n+1))_{n\geq 1}$ sequence is bounded by 1. Hence as seen in the notes the power series converges uniformly for |x| < r for any r < 1. Thus it gives a continuous function in |x| < 1.

(1 mark) 3. Show that the series $\sum_{n=1}^{\infty} nx^n$ gives a continuous function in |x| < 1.

Solution: If s is a number such that 0 < s < 1, then we have seen that $n < (1/s)^n$ for sufficiently large n.

Hence, as seen in the notes the power series converges uniformly for $|x| \le r$ for any r < s. Thus it gives a continuous function in |x| < s.

Since 0 < s < 1 is arbitrary, it follows that we get a continuous function in |x| < 1.

4. For any number α and a positive integer k, we define the function

$$\binom{\alpha}{k} = \frac{\alpha \cdot (\alpha - 1) \cdots (\alpha - k + 1)}{k!}$$

In the following sequence of exercises, we will show that the series

$$f_{\alpha}(x) = \sum_{k=1}^{\infty} \binom{\alpha}{k} x^{k}$$

converges to a continuous function for |x| < 1. This power series is called the (generalised) "binomial series" for α -th power of (1 + x).

(1 mark) (a) Show that if $-1 \le \alpha < 0$, then for all positive integers k we have

$$\left| \begin{pmatrix} \alpha \\ k \end{pmatrix} \right| \le 1$$

Solution: We note that $|\alpha| = -\alpha$. Hence $|\alpha \cdot (\alpha - 1) \cdots (\alpha - k + 1)| = (-\alpha) \cdot (1 - \alpha) \cdots (k - \alpha - 1) \le 1 \cdot 2 \cdots k = k!$ It follows that $\left| \begin{pmatrix} \alpha \\ k \end{pmatrix} \right| \le \frac{k!}{k!} = 1$

(1 mark) (b) Assuming
$$\alpha \ge 0$$
 choose a positive integer r so that $-1 \le \alpha - r < 0$ (by Archimedean principle!). Then for any positive integer k show that

$$\left| \begin{pmatrix} \alpha \\ k \end{pmatrix} \right| \le C_r$$

for some constant C_r depending only on r (and not on k).

Solution: We note that $|\alpha - r| = r - \alpha$. Hence

$$|(\alpha - r) \cdot (\alpha - r - 1) \cdots (\alpha - k + 1)| = (r - \alpha) \cdot (r + 1 - \alpha) \cdots (k - \alpha - 1)$$
$$\leq r \cdot (r + 1) \cdots k = \frac{k!}{(r - 1)!}$$

It follows that for k > r, we have

$$\begin{vmatrix} \binom{\alpha}{k} \end{vmatrix} = |\alpha \cdot (\alpha - 1) \cdots (\alpha - r + 1)| \cdot \frac{|(\alpha - r) \cdot (\alpha - r - 1) \cdots (\alpha - k + 1)|}{k!} \\ \leq |\alpha \cdot (\alpha - 1) \cdots (\alpha - r + 1)| \cdot \frac{k!}{(r - 1)!k!} \\ = \frac{|\alpha \cdot (\alpha - 1) \cdots (\alpha - r + 1)|}{(r - 1)!}$$

We take C_r to be the maximum of the above number and $|\binom{\alpha}{k}|$ for $k \leq r$.

(1 mark) (c) Assume that there is a positive integer r so that $-r \le \alpha < -r + 1$ and show that

$$\left| \begin{pmatrix} \alpha \\ k \end{pmatrix} \right| \le \begin{pmatrix} r+k-1 \\ r-1 \end{pmatrix}$$

Solution: We note that
$$|\alpha| = -\alpha$$
. Hence
 $|\alpha \cdot (\alpha - 1) \cdots (\alpha - k + 1)| = (-\alpha) \cdot (1 - \alpha) \cdots (k - \alpha - 1)$
 $\leq r \cdot (r + 1) \cdots (r + k - 1) = \frac{(r + k - 1)!}{(r - 1)!}$
It follows that
 $\left| \begin{pmatrix} \alpha \\ k \end{pmatrix} \right| \leq \frac{(r + k - 1)!}{(r - 1)!k!} = \binom{r + k - 1}{r - 1}$

(1 mark) (d) For a fixed r show that
$$\binom{r+k-1}{r-1}$$
 is a polynomial function of k of degree $r-1$.

Solution: Note that

$$\binom{r+k-1}{r-1} = \frac{(r+k-1)\cdot(r+k-2)\cdots(k+1)}{(r-1)!}$$

From this expression it is clear that it is a polynomial of degree (r-1) in the variable k.

(2 marks) (e) In each case above, use the results already proved in the notes to conclude that the power series $f_{\alpha}(x)$ converges to define a continuous function in |x| < 1.

Solution: In the first and second case $(\alpha \ge -1)$ the parts (1) and (2) above show that the coefficients are bounded independent of k. In case (3), the coefficients are bounded by a polynomial function of k. Thus, for any s such that 0 < s < 1, the coefficients are dominated by $((1/s)^k)_{k\ge 1}$. By the results proved in the notes, the series is uniformly convergent in $|x| \le r$ for every r < s. Since s is also arbitrary, we get this for all r with 0 < r < 1. It follows that for every α , the series defining $f_{\alpha}(x)$ gives a continuous function for |x| < 1.