## Solutions to Assignment 7

(2 marks) 1. Consider the functions $f_{n}(x)=2^{2 n} x^{n}(1-x)^{n}$. Is the sequence ( $f_{n}$ ) uniformly convergent in $[0,1]$ ?

Solution: We note that

$$
f_{n}(x)=2^{2 n} x^{n}(1-x)^{n}=y^{n}
$$

where $y=4 x(1-x)$.
If $x=(1 / 2)-(1 / k)$ for some positive integer $k \geq 2$, then

$$
x(1-x)=\left(\frac{1}{2}-\frac{1}{k}\right) \cdot\left(\frac{1}{2}+\frac{1}{k}\right)=\frac{1}{4}-\frac{1}{k^{2}}
$$

Hence, $y=4 x(1-x)<1$. Thus, the sequence $\left(y^{n}\right)_{n \geq 1}$ converges to 0 .
It follows that $\left(f_{n}(x)\right)_{n \geq 1}$ converges to 0 for $x=(1 / 2)-(1 / k)$ for $k \geq 2$. Note also that $((1 / 2)-(1 / k))_{k \geq 1}$ converges to $(1 / 2)$.

On the other hand, it is clear than $f_{n}(1 / 2)=1$ for all $n$.
Thus, the limit function is not continuous at $x=(1 / 2)$. However, the functions $f_{n}(x)$ are continuous functions in $[0,1]$. It follows that $\left(f_{n}\right)_{n \geq 1}$ is not uniformly convergent in any interval containing ( $1 / 2$ ).
2. Show that each of the following the series gives a continuous function in $|x|<1$.
(1 mark)
(1 mark)
(b) $\sum_{n=1}^{\infty} \frac{n}{1+n} x^{n}$.

Solution: The $(n /(n+1))_{n \geq 1}$ sequence is bounded by 1 . Hence as seen in the notes the power series converges uniformly for $|x|<r$ for any $r<1$. Thus it gives a continuous function in $|x|<1$.
(1 mark)
3. Show that the series $\sum_{n=1}^{\infty} n x^{n}$ gives a continuous function in $|x|<1$.

Solution: If $s$ is a number such that $0<s<1$, then we have seen that $n<(1 / s)^{n}$ for sufficently large $n$.
Hence, as seen in the notes the power series converges uniformly for $|x| \leq r$ for any $r<s$. Thus it gives a continuous function in $|x|<s$.
Since $0<s<1$ is arbitrary, it follows that we get a continuous function in $|x|<1$.
4. For any number $\alpha$ and a positive integer $k$, we define the function

$$
\binom{\alpha}{k}=\frac{\alpha \cdot(\alpha-1) \cdots(\alpha-k+1)}{k!}
$$

In the following sequence of exercises, we will show that the series

$$
f_{\alpha}(x)=\sum_{k=1}^{\infty}\binom{\alpha}{k} x^{k}
$$

converges to a continuous function for $|x|<1$. This power series is called the (generalised) "binomial series" for $\alpha$-th power of $(1+x)$.
(1 mark) (a) Show that if $-1 \leq \alpha<0$, then for all positive integers $k$ we have

$$
\left|\binom{\alpha}{k}\right| \leq 1
$$

Solution: We note that $|\alpha|=-\alpha$. Hence

$$
|\alpha \cdot(\alpha-1) \cdots(\alpha-k+1)|=(-\alpha) \cdot(1-\alpha) \cdots(k-\alpha-1) \leq 1 \cdot 2 \cdots k=k!
$$

It follows that

$$
\left|\binom{\alpha}{k}\right| \leq \frac{k!}{k!}=1
$$

(1 mark)
(b) Assuming $\alpha \geq 0$ choose a positive integer $r$ so that $-1 \leq \alpha-r<0$ (by Archimedean principle!). Then for any positive integer $k$ show that

$$
\left|\binom{\alpha}{k}\right| \leq C_{r}
$$

for some constant $C_{r}$ depending only on $r$ (and not on $k$ ).

Solution: We note that $|\alpha-r|=r-\alpha$. Hence

$$
\begin{array}{r}
|(\alpha-r) \cdot(\alpha-r-1) \cdots(\alpha-k+1)|=(r-\alpha) \cdot(r+1-\alpha) \cdots(k-\alpha-1) \\
\leq r \cdot(r+1) \cdots k=\frac{k!}{(r-1)!}
\end{array}
$$

It follows that for $k>r$, we have

$$
\begin{array}{r}
\left|\binom{\alpha}{k}\right|=|\alpha \cdot(\alpha-1) \cdots(\alpha-r+1)| \cdot \frac{|(\alpha-r) \cdot(\alpha-r-1) \cdots(\alpha-k+1)|}{k!} \\
\leq|\alpha \cdot(\alpha-1) \cdots(\alpha-r+1)| \cdot \frac{k!}{(r-1)!k!} \\
=\frac{|\alpha \cdot(\alpha-1) \cdots(\alpha-r+1)|}{(r-1)!}
\end{array}
$$

We take $C_{r}$ to be the maximum of the above number and $\left|\binom{\alpha}{k}\right|$ for $k \leq r$.
(1 mark) (c) Assume that there is a positive integer $r$ so that $-r \leq \alpha<-r+1$ and show that

$$
\left|\binom{\alpha}{k}\right| \leq\binom{ r+k-1}{r-1}
$$

Solution: We note that $|\alpha|=-\alpha$. Hence

$$
\begin{aligned}
&|\alpha \cdot(\alpha-1) \cdots(\alpha-k+1)|=(-\alpha) \cdot(1-\alpha) \cdots(k-\alpha-1) \\
& \leq r \cdot(r+1) \cdots(r+k-1)=\frac{(r+k-1)!}{(r-1)!}
\end{aligned}
$$

It follows that

$$
\left|\binom{\alpha}{k}\right| \leq \frac{(r+k-1)!}{(r-1)!k!}=\binom{r+k-1}{r-1}
$$

(1 mark)
(d) For a fixed $r$ show that $\binom{r+k-1}{r-1}$ is a polynomial function of $k$ of degree $r-1$.

Solution: Note that

$$
\binom{r+k-1}{r-1}=\frac{(r+k-1) \cdot(r+k-2) \cdots(k+1)}{(r-1)!}
$$

From this expression it is clear that it is a polynomial of degree $(r-1)$ in the variable $k$.
(2 marks) (e) In each case above, use the results already proved in the notes to conclude that the power series $f_{\alpha}(x)$ converges to define a continuous function in $|x|<1$.

Solution: In the first and second case ( $\alpha \geq-1$ ) the parts (1) and (2) above show that the coefficients are bounded independent of $k$.
In case (3), the coefficents are bounded by a polynomial function of $k$. Thus, for any $s$ such that $0<s<1$, the coefficients are dominated by $\left((1 / s)^{k}\right)_{k \geq 1}$. By the results proved in the notes, the series is uniformly convergent in $|x| \leq r$ for every $r<s$. Since $s$ is also arbitrary, we get this for all $r$ with $0<r<1$.
It follows that for every $\alpha$, the series defining $f_{\alpha}(x)$ gives a continuous function for $|x|<1$.

