Strictly Monotone functions

A function f is said to be order preserving on $[a, b]$ if, for all x and y in this interval, $x<y$ implies that $f(x)<f(y)$. It is said to be order reversing on $[a, b]$ if, for all x and y in this interval, $x<y$ implies that $f(x)>f(y)$; equivalently, we require that $-f$ is order preserving. A function is said to be strictly monotone if it is either order preserving or it is order reversing; equivalently, we required that either f or $-f$ is order preserving. Note that the inequality must be the same for all x, y in the interval $[a, b]$ with $x<y$.

Strictly monotone continuous functions

Given that f is an order preserving continuous function on the interval $[a, b]$. By the intermediate value theorem, given any x that lies in the interval $[f(a), f(b)]$ there is a y in the interval $[a, b]$ for which $f(y)=x$. Moreover, if $z<y$, then $f(z)<f(y)=x$ and if $z>y$, then $f(z)>f(y)=x$. Hence, the y is uniquely determined by x. Thus, we have a function g given by $g(x)=y$. Can we say that this function is continuous?

Let $\left(x_{n}\right)_{n \geq 1}$ by an increasing sequence in $[f(a), f(b)]$. Let $y_{n}=g\left(x_{n}\right)$ with g as above. Since $f\left(y_{n}\right)=x_{n}$ and f is order preserving, it follows that $\left(y_{n}\right)_{n \geq 1}$ is also an increasing sequence in $[a, b]$. Let y denote the least upper bound of $\left(y_{n}\right)_{n \geq 1}$. By the continuity of f, we have

$$
f(y)=f\left(\lim \left(f\left(y_{n}\right)\right)_{n \geq 1}\right)=\lim \left(f\left(y_{n}\right)\right)_{n \geq 1}=\lim \left(x_{n}\right)_{n \geq 1}=x
$$

where x is the least upper bound of $\left(x_{n}\right)_{n \geq 1}$. It follows that $g(x)=y$. In other words, g preserves least upper bounds of increasing sequences. A similar argument will show that g preserves greatest lower bounds of decreasing sequences.
Let $\left(x_{n}\right)_{n \geq 1}$ be any sequence in $[f(a), f(b)]$ and put $y_{n}=g\left(x_{n}\right)$. Now, consider $c_{n}=\max \left\{x_{1}, \ldots, x_{n}\right\}$ and $d_{n}=\max \left\{y_{1}, \ldots, y_{n}\right\}$. Since we are taking the maximum element of a finite set $c_{n}=x_{p}$ for some p in the range $1, \ldots, n$; similarly $d_{n}=y_{q}$ for some q in the range $1, \ldots, n$. Since f is order preserving we see that $p=q$ and $c_{n}=x_{p}=f\left(y_{p}\right)=f\left(d_{n}\right)$. The sequences $\left(c_{n}\right)_{n \geq 1}$ and $\left(d_{n}\right)_{n \geq 1}$ are increasing sequences. By the previous paragraph we see that if c is the least upper bound of $\left(c_{n}\right)_{n \geq 1}$ and d is the least upper bound of $\left(d_{n}\right)_{n \geq 1}$, then $f(d)=c$. By definition of \sup, we have $c=\sup \left(x_{n}\right)_{n \geq 1}$ and $d=\sup \left(y_{n}\right)_{n \geq 1}$. Hence, we have shown that g preserves the supremum of sequences. A similar argument will show that g preserves the infimum of sequences.

Finally, from the definition of limit superior and limit inferior in terms of supremum and infimum we see that g preserves limit superior and limit inferior. It follows that g preserves limits and so g is continuous.

A similar argument can be made for order reversing functions f or, more simply the above argument can be applied to $-f$ and the fact that multiplication by -1 is continuous can be used.

In summary, we have shown
If f is a strictly monotone continuous function then it has an inverse function g which is also continuous (and is also strictly monotone).

Examples

The above reasoning can be applied to the function $f(x)=x^{n}$ on any interval of the form $[0, a]$ where it is order preserving. This shows that there is a continuous function g on the interval $\left[0, a^{n}\right]$ so that $(g(x))^{n}=x$ for all x in this interval. Since a can be any positive number, we see that this function g is actually defined for all positive x. This is the n-th root function for non-negative numbers and is usually denoted by $x^{(1 / n)}$ or $\sqrt[n]{x}$.

The above reasoning can also be applied to the function $\exp (x)$ on any interval of the form $[0, a]$ where it is obviously order preserving. (In fact, it is order preserving on any interval as we shall see in the assignment.) This shows that there is a continuous function g on the interval $[\exp (0), \exp (a)]$ so that $\exp (g(x))=x$ for any x in this interval. Since a can be any positive number, we see that this function g is defined for all positive $x \geq 1=\exp (0)$. This is the "logarithm" function and is usually denoted by log. (In some non-mathematics books you may see the notation $\log _{e}$ or \ln used for this function, but in this course we will stick to this meaning for log.) We will see a different approach to this function later.

