Power Series and Uniform convergence

(2 marks) 1. Consider the functions $f_{n}(x)=2^{2 n} x^{n}(1-x)^{n}$. Is the sequence $\left(f_{n}\right)$ uniformly convergent in $[0,1]$?
2. Show that each of the following the series gives a continuous function in $|x|<1$.
(1 mark) (a) $\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n}$.
(1 mark) (b) $\sum_{n=1}^{\infty} \frac{n}{1+n} x^{n}$.
(1 mark) 3. Show that the series $\sum_{n=1}^{\infty} n x^{n}$ gives a continuous function in $|x|<1$.
4. For any number α and a positive integer k, we define the function

$$
\binom{\alpha}{k}=\frac{\alpha \cdot(\alpha-1) \cdots(\alpha-k+1)}{k!}
$$

In the following sequence of exercises, we will show that the series

$$
f_{\alpha}(x)=\sum_{k=1}^{\infty}\binom{\alpha}{k} x^{k}
$$

converges to a continuous function for $|x|<1$. This power series is called the (generalised) "binomial series" for α-th power of $(1+x)$.
(1 mark)
(1 mark)
(1 mark)
(a) Show that if $-1 \leq \alpha<0$, then for all positive integers k we have

$$
\left|\binom{\alpha}{k}\right| \leq 1
$$

(b) Assuming $\alpha \geq 0$ choose a positive integer r so that $-1 \leq \alpha-r<0$ (by Archimedean principle!). Then for any positive integer k show that

$$
\left|\binom{\alpha}{k}\right| \leq C_{r}
$$

for some constant C_{r} depending only on r (and not on k).
(c) Assume that there is a positive integer r so that $-r \leq \alpha<-r+1$ and show that

$$
\left|\binom{\alpha}{k}\right| \leq\binom{ r+k-1}{r-1}
$$

(d) For a fixed r show that $\binom{r+k-1}{r-1}$ is a polynomial function of k of degree $r-1$.
(e) In each case above, use the results already proved in the notes to conclude that the power series $f_{\alpha}(x)$ converges to define a continuous function in $|x|<1$.

