Solutions to Assignment 6

1. For each of the following functions defined in the interval $(-1,1)$, find an n such that $\left|f_{p}(x)-f_{p}(y)\right|<1 / 5$ whenever x and y lie in this interval and satisfy $|x-y|<1 / n$.
(1 mark)
(1 mark)
(1 mark)
(d) $f_{4}(x)=(x+2) /\left(x^{2}+2\right)$

Solution: Since $f_{4}(x)=f_{3}(x) \cdot f_{1}(x)$, we note that

$$
f_{4}(x)-f_{4}(y)=f_{1}(x) \cdot\left(f_{3}(x)-f_{3}(y)\right)+f_{3}(y) \cdot\left(f_{1}(x)-f_{1}(y)\right)
$$

Since $\left|f_{1}(z)\right| \leq 3$ for z in $(-1,1)$, and $\left|f_{3}(z)\right| \leq 1 / 2$ for z in $(-1,1)$, we see that

$$
\left|f_{4}(x)-f_{4}(y)\right| \leq 3\left|f_{3}(x)-f_{3}(y)\right|+(1 / 2)\left|f_{1}(x)-f_{1}(y)\right|
$$

in this interval. So $n=30$ is adequate.
2. We are given a function f on $[0,1]$ so that for any x, y in this interval, we have $\mid f(x)-$ $f(y)|<3| x-y \mid$.
(1 mark) (a) $f_{1}(x)=x+2$

Solution: We note that $f(x)-f(y)=x-y$. So $n=5$ is adequate.
(b) $f_{2}(x)=x^{2}+2$

Solution: We note that $f_{2}(x)-f_{2}(y)=(x-y)(x+y)$. Note that $|x+y| \leq 2$ for x and y in $(-1,1)$. So $\left|f_{2}(x)-f_{2}(y)\right| \leq 2|x-y|$. So $n=10$ is adequate.
(c) $f_{3}(x)=1 /\left(x^{2}+2\right)$

Solution: Since $f_{3}(x)=1 / f_{2}(x)$, we note that

$$
f_{3}(x)-f_{3}(y)=\frac{f_{2}(y)-f_{2}(x)}{f_{2}(x) f_{2}(y)}
$$

Since $\left|f_{2}(z)\right| \geq 2$ for z in $(-1,1)$, we see that $\left|f_{3}(x)-f_{3}(y)\right| \leq(1 / 2)\left|f_{2}(x)-f_{2}(y)\right|$ in this interval. So $n=5$ is adequate.

Solion: Since $f_{1}(x)=f_{3}(x) \cdot f_{1}(x)$, we not
(a) Show that f is continuous in the interval $[0,1]$.

Solution: Given $\epsilon>0$ we choose $\delta=\epsilon / 3$. Due to the given inequality, we get, for any x, y in this interval, that if $|x-y|<\delta$, then

$$
|f(x)-f(y)|<3|x-y|<3 \delta=\epsilon
$$

(1 mark) (b) At what points of $[0,1]$ will you compute f so that you get a table of values which you can use to get the approximate value of f up to an accuracy of $1 / 20$.

Solution: For $\epsilon=1 / 20$, we need $\delta=1 / 60$. So, we can compute $f(p / 60)$ for $p=0,1, \ldots, 59$. For any x in the interval $[0,1]$, we take p to be the largest integer less than $60 x$ and put $f(p / 60)$ as the approximate value for $f(x)$.
3. Suppose that f and g are given as continuous functions in some interval I of the number line.
(1 mark) (a) Show that the function $|f|$ defined by

$$
|f|(x)= \begin{cases}f(x) & \text { if } f(x) \geq 0 \\ -f(x) & \text { if } f(x)<0\end{cases}
$$

is a continuous function on I. (Hint: Use composition of continuous functions.)
Solution: The function $a(x)=|x|$ was shown to be a continuous function in the notes. It follows that $a \circ f$ is a continuous function. We note that $|f|=a \circ f$.
(1 mark) (b) Define the functions f_{+}and f_{-}by

$$
f_{+}= \begin{cases}f(x) & \text { if } f(x) \geq 0 \\ 0 & \text { if } f(x)<0\end{cases}
$$

and

$$
f_{-}= \begin{cases}0 & \text { if } f(x) \geq 0 \\ -f(x) & \text { if } f(x)<0\end{cases}
$$

Show that $|f|=f_{+}+f_{-}$and $f=f_{+}-f_{-}$.
Solution: We see that, at all points x where $f(x) \geq 0$, we have $f_{-}=0$ and so $|f|(x)=f(x)=f_{+}(x)$ as required. Similarly, at all points x where $f(x)<0$, we have $f_{+}=0$ and so $|f|(x)=-f(x)=f_{-}(x)$ as required.
(1 mark) (c) Use the previous two parts to show that f_{+}and f_{-}are continuous functions on I.
Solution: We add and subtract the above two identities to obtain

$$
f_{+}=\frac{|f|+f}{2} \text { and } f_{+}=\frac{|f|-f}{2}
$$

By the arithmetic properties of continuous functions, it follows that f_{+}and f_{-} are continuous functions.
(1 mark) (d) Use $h=f-g$ to denote the difference of the two functions and show that for all x in I,

$$
g(x)+h_{+}(x)=\max \{f(x), g(x)\}
$$

Solution: At all points x where $f(x) \geq g(x)$, we have $h_{+}(x)=f(x)-g(x)$ and so $g(x)+h_{+}(x)=f(x)$ at these points. On the other hand, at points x where $f(x)<g(x)$, we have $h_{+}(x)=0$ and so $g(x)+h_{+}(x)=g(x)$.
(1 mark) (e) Show that the function $\max \{f, g\}$ defined by

$$
(\max \{f, g\})(x)=\max \{f(x), g(x)\}
$$

is a continuous function in I. Similarly, for $\min \{f, g\}$.
Solution: By the arithmetic of continuous functions h is a continuous function. As seen above, this means h_{+}is a continuous function. Again applying the arithmetic of continuous functions, we see that $g+h_{+}$is also continuous. By the previous exercise, this is the same as $\max \{f, g\}$.
We note that $\min \{f, g\}=-\max \{-f,-g\}$, so by the arithmetic of continuous functions and the previous paragraph, this is a continuous function. A different proof can be given by equating it to $g-h_{-}$.

