Limits of functions

Given any positive number x, we have seen that the sequence $\left((1+x / n)^{n}\right)_{n \geq 1}$ is a bounded increasing sequence. If $f(x)$ denotes the least upper bound of this sequence, is this f a continuous function of x ?
Similarly, given any number $x>1$, we have seen that the sequence defined by $z_{1}=1$ and $z_{n+1}=\left(x z_{n}+x\right) /\left(z_{n}+x\right)$ results in a bounded increasing sequence whose limit is a number $f(x)$ such that $f(x)^{2}=x$. Is this a continuous function of x ?

In each of the above cases, the n-th term of the sequence is a function of x. So we need to understand the meaning of convergence of a sequence of functions.

Pitfall

For each positive integer n, let $f_{n}(x)=x^{n}$. This is a continuous function on the interval $[0,1]$. Moreover, for each fixed x, the sequence $\left(f_{n}(x)\right)_{n \geq 1}$ converges. In fact, if $x<1$, then, as we have seen earlier, this sequence converges to 0 . When $x=1$, this is a constant sequence with term 1 and so it converges to 1 . Thus, the limiting function is defined by

$$
f(x)= \begin{cases}0 & \text { if } 0 \leq x<1 \\ 1 & \text { if } x=1\end{cases}
$$

It is obvious that this is not a continuous function. (The sequence $((1-(1 / n)))$ converges to 1 but the values $f(1-(1 / n))$ are all 0 , while $f(1)=1$.)

In other words, if $\left(f_{n}\right)_{n \geq 1}$ is a sequence of continuous functions so that $\left(f_{n}(x)\right)$ converges for all values of x in some region, this alone does not ensure that the "limiting function" is a continuous function. We need something more.

A positive example

For each positive integer n we define the function $e_{n}(x)$ by the formula

$$
e_{n}(x)=1+x+\cdots+\frac{x^{n}}{n!}=\sum_{k=1}^{n} \frac{x^{k}}{k!}
$$

For x lying in the interval $[0,1]$, the sequence $\left(e_{n}(x)\right)_{n \geq 1}$ is an increasing sequence. We have shown earlier that it is bounded. Hence, it has a limit (which also is its least upper bound) which we can denote as $e(x)$. The question we ask ourselves is whether this is a continuous function. To see this, we note that

$$
e(x)-e(y)=\left(e(x)-e_{n}(x)\right)+\left(e_{n}(x)-e_{n}(y)\right)+\left(e_{n}(y)-e(x)\right)
$$

Since, e_{n} is continuous, we can make the second term as small as we want by making x and y close enough. The problem is to make $e(z)-e_{n}(z)$ uniformly small for all z in $[0,1]$ by choosing n large enough.

Now, $e(x)-e_{n}(x)$ is given by the sum of the series $\sum_{k=n+1}^{\infty}\left(x^{k} / k!\right)$ which is bounded above by $\sum_{k=n+1}^{\infty}(1 / k!)$ for x in $[0,1]$. The latter series is in turn bounded above

$$
\sum_{k=n+1}^{\infty} \frac{1}{k!}=\sum_{p=1}^{\infty} \frac{1}{n!} \cdot \frac{1}{(n+1) \cdots(n+p)} \leq \frac{1}{n!} \cdot \sum_{p=1}^{\infty} \frac{1}{(n+1)^{p}}=\frac{1}{n!} \cdot \frac{1}{n}
$$

by comparing with the geometric series.
Now, given $\epsilon>0$, we can choose n so that $e(x)-e_{n}(x)<\epsilon / 3$ for all x in $[0,1]$. For that choice of n, by the continuity of e_{n}, we can choose δ so that $\left|e_{n}(x)-e_{n}(y)\right|<\epsilon / 3$ for $|x-y|<\delta$. It then follows that

$$
|e(x)-e(y)| \leq\left|e(x)-e_{n}(x)\right|+\left|e_{n}(x)-e_{n}(y)\right|+\left|e_{n}(y)-e(x)\right|<\epsilon
$$

This proves continuity of $e(x)$. It is not too difficult to extend this argument to any interval $[a, b]$ in the real line. Hence, we see that the series $\sum_{k=0}^{\infty}\left(x^{k} / k!\right)$ defines a continuous function for all x. This function is called the exponential function and denoted as $\exp (x)$. We will study its properties later.

Uniform convergence

When we examine the above proof of continuity, we note that the key point was that given any $\epsilon>0$ we can choose an n so that $\left|e(x)-e_{n}(x)\right|<\epsilon$ for all x in the interval $[0,1]$.

We say that a sequence $\left(f_{n}\right)_{n \geq 1}$ of functions converges uniformly to a function f in an interval $[a, b]$ if, given a positive integer k, there is an n_{k} so that $\left|f_{n}(x)-f(x)\right|<1 / k$ for all $n \geq n_{k}$ and for all x in the interval $[a, b]$.

The uniform choice of n for all x in the interval $[a, b]$ is the crucial point for us.
Now, suppose that f_{n} are all continuous in the interval $[a, b]$, we then claim that f is also continuous in this interval. The proof is essentially the same as the proof given above for the sequence $\left(e_{n}\right)_{n \geq 1}$. Given a positive integer k, we pick an n so that $n>n_{3 k}$ so that $\left|f(x)-f_{n}(x)\right|<1 /(3 k)$ for all x in $[a, b]$. For this choice of n, we choose some p so that $\left|f_{n}(x)-f_{n}(y)\right|<1 /(3 k)$ for all x, y in the interval $[a, b]$ with $|x-y|<1 / p$. We then have

$$
|f(x)-f(y)| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(y)\right|+\left|f_{n}(y)-f(x)\right|<1 / k
$$

as required.
As in the case of convergence of numbers it is sometimes convenient to talk about uniform convergence of functions without knowing the limiting function.

We say that a sequence $\left(f_{n}\right)_{n \geq 1}$ is "uniformly convergent" in an interval $[a, b]$ if, given a positive integer k, there is an n_{k} so that $\left|f_{p}(x)-f_{q}(x)\right|<1 / k$ for all $p, q \geq n_{k}$ and for all x in the interval $[a, b]$.

Note that, for a fixed x this implies that $\left(f_{n}(x)\right)_{n \geq 1}$ satisfies Cauchy's criterion for convergence. Hence, it converges to a limit which we can call $f(x)$. This defines a function f on $[a, b]$. Now, given k, we note that if $p \geq n_{k+1}$, then

$$
\left|f(x)-f_{p}(x)\right|=\lim \left(\left|f_{n}(x)-f_{p}(x)\right|\right)_{n \geq 1} \leq 1 /(k+1)<1 / k
$$

Hence, the sequence of functions $\left(f_{n}\right)_{n \geq 1}$ converges uniformly to f.
In particular, we note that if $\left(f_{n}\right)_{n \geq 1}$ is a uniformly convergent sequence of continuous functions on the interval $[a, b]$, then the limit function is defined on $[a, b]$ and is a continuous function on this interval.

Piecewise linear approximation

We would like to find a "good" approximation of a continuous function f on the interval $[a, b]$.
Given an error bar $1 / k$ (typically $k=10^{r}$ for $(r-1)$ places of decimal), we have seen that there is an n_{k} so that if $|x-y|<1 / n_{k}$ and x, y lie in $[a, b]$ we have $|f(x)-f(y)| 1 / k$.

Thus, it is enough to calculate $f\left(a+p / n_{k}\right)$ for values of p from 0 up to $(b-a) / n_{k}$ (or the largest multiple of $1 / n_{k}$ less than it). This allows us to create a table of values which can be used in place of evaluation of f for each given x. In other words, given x in $[a, b]$ we can take p to be the greatest integer less than (or equal to) $(x-a) n_{k}$; then $f\left(a+p / n_{k}\right)$ is an approximation of $f(x)$ with error at most $1 / k$.

We may not be satisfied with this way of doing the approximation since these approximate values give a "step" function that jumps at $a+p / n_{k}$ for each integer p.

A different approach is to define a new function f_{k} as follows. Let r be the integer part of $(b-a) n_{k}$ and use the notation $a_{p}=a+p / n_{k}$ for $p=0, \ldots, r$ and $a_{r+1}=b$. For x lying in the interval $\left[a_{p}, a_{p+1}\right]$ we put $t=\left(x-a_{p}\right) /\left(a_{p+1}-a_{p}\right)$ and note that $x=(1-t) \cdot a_{p}+t \cdot a_{p+1}$. We then put $f_{k}(x)=(1-t) f\left(a_{p}\right)+t f\left(a_{p+1}\right)$. It is clear that this function f_{k} can easily be implemented as a program by giving the table of values $f\left(a_{p}\right)$.
We note that this function satisfies $f_{k}\left(a_{p}\right)=f\left(a_{p}\right)$. For this reason, we say that it "interpolates" the (values of the) function f at these points or that f_{k} is a piecewise linear interpolation of f.

As proved in the previous section, this function f_{k} is continuous. Moreover, we notice that for x in $\left[a_{p}, a_{p+1}\right]$, we have

$$
\begin{aligned}
\left|f(x)-f_{k}(x)\right|=\mid f(x)-((1-t) & \left.f\left(a_{p}\right)+t f\left(a_{p+1}\right)\right) \mid \\
\leq & (1-t)\left|f(x)-f\left(a_{p}\right)\right|+t\left|f(x)-f\left(a_{p+1}\right)\right|
\end{aligned}
$$

Since $a_{p+1}-a_{p} \leq 1 / n_{k}$ and x is "trapped" in between, we see that $\left|f(x)-f\left(a_{p}\right)\right|<$ $1 / k$ and $\left|f(x)-f\left(a_{p+1}\right)\right|<1 / k$. So, it follows that

$$
\begin{aligned}
\left|f(x)-f_{k}(x)\right| \leq(1-t)\left|f(x)-f\left(a_{p}\right)\right|+t \mid f(& x)-f\left(a_{p+1}\right) \mid \\
& <(1-t)(1 / k)+t(1 / k)=1 / k
\end{aligned}
$$

In other words, f_{k} is uniformly close to f with error at most $1 / k$.
In summary, we have shown that there is a sequence $\left(f_{k}\right)_{k \geq 1}$ of piecewise linear continuous functions that converges uniformly to a given continuous function f on an interval $[a, b]$.
Such an approximation is very useful when computing f at every point is very difficult or computationally intensive and a good enough approximation will do.

