
Limits of functions
Given any positive number x, we have seen that the sequence ((1 + x/n)n)n≥1
is a bounded increasing sequence. If f(x) denotes the least upper bound of this
sequence, is this f a continuous function of x?

Similarly, given any number x > 1, we have seen that the sequence defined by
z1 = 1 and zn+1 = (xzn + x)/(zn + x) results in a bounded increasing sequence
whose limit is a number f(x) such that f(x)2 = x. Is this a continuous function
of x?

In each of the above cases, the n-th term of the sequence is a function of x. So
we need to understand the meaning of convergence of a sequence of functions.

Pitfall
For each positive integer n, let fn(x) = xn. This is a continuous function on the
interval [0, 1]. Moreover, for each fixed x, the sequence (fn(x))n≥1 converges. In
fact, if x < 1, then, as we have seen earlier, this sequence converges to 0. When
x = 1, this is a constant sequence with term 1 and so it converges to 1. Thus,
the limiting function is defined by

f(x) =
{

0 if 0 ≤ x < 1
1 if x = 1

It is obvious that this is not a continuous function. (The sequence ((1− (1/n)))
converges to 1 but the values f(1− (1/n)) are all 0, while f(1) = 1.)

In other words, if (fn)n≥1 is a sequence of continuous functions so that (fn(x))
converges for all values of x in some region, this alone does not ensure that the
“limiting function” is a continuous function. We need something more.

A positive example
For each positive integer n we define the function en(x) by the formula

en(x) = 1 + x+ · · ·+ xn

n! =
n∑

k=1

xk

k!

For x lying in the interval [0, 1], the sequence (en(x))n≥1 is an increasing sequence.
We have shown earlier that it is bounded. Hence, it has a limit (which also is its
least upper bound) which we can denote as e(x). The question we ask ourselves
is whether this is a continuous function. To see this, we note that

e(x)− e(y) = (e(x)− en(x)) + (en(x)− en(y)) + (en(y)− e(x))

Since, en is continuous, we can make the second term as small as we want by
making x and y close enough. The problem is to make e(z)− en(z) uniformly
small for all z in [0, 1] by choosing n large enough.
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Now, e(x) − en(x) is given by the sum of the series
∑∞

k=n+1(xk/k!) which is
bounded above by

∑∞
k=n+1(1/k!) for x in [0, 1]. The latter series is in turn

bounded above
∞∑

k=n+1

1
k! =

∞∑
p=1

1
n! ·

1
(n+ 1) · · · (n+ p) ≤

1
n! ·

∞∑
p=1

1
(n+ 1)p

= 1
n! ·

1
n

by comparing with the geometric series.

Now, given ε > 0, we can choose n so that e(x) − en(x) < ε/3 for all x in
[0, 1]. For that choice of n, by the continuity of en, we can choose δ so that
|en(x)− en(y)| < ε/3 for |x− y| < δ. It then follows that

|e(x)− e(y)| ≤ |e(x)− en(x)|+ |en(x)− en(y)|+ |en(y)− e(x)| < ε

This proves continuity of e(x). It is not too difficult to extend this argument
to any interval [a, b] in the real line. Hence, we see that the series

∑∞
k=0(xk/k!)

defines a continuous function for all x. This function is called the exponential
function and denoted as exp(x). We will study its properties later.

Uniform convergence
When we examine the above proof of continuity, we note that the key point was
that given any ε > 0 we can choose an n so that |e(x)− en(x)| < ε for all x in
the interval [0, 1].

We say that a sequence (fn)n≥1 of functions converges uniformly to a function
f in an interval [a, b] if, given a positive integer k, there is an nk so that
|fn(x)− f(x)|< 1/k for all n ≥ nk and for all x in the interval [a, b].

The uniform choice of n for all x in the interval [a, b] is the crucial point for us.

Now, suppose that fn are all continuous in the interval [a, b], we then claim that
f is also continuous in this interval. The proof is essentially the same as the
proof given above for the sequence (en)n≥1. Given a positive integer k, we pick
an n so that n > n3k so that |f(x)− fn(x)| < 1/(3k) for all x in [a, b]. For this
choice of n, we choose some p so that |fn(x)− fn(y)| < 1/(3k) for all x, y in the
interval [a, b] with |x− y| < 1/p. We then have

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(x)| < 1/k

as required.

As in the case of convergence of numbers it is sometimes convenient to talk
about uniform convergence of functions without knowing the limiting function.

We say that a sequence (fn)n≥1 is “uniformly convergent” in an interval [a, b]
if, given a positive integer k, there is an nk so that |fp(x)− fq(x)|< 1/k for all
p, q ≥ nk and for all x in the interval [a, b].
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Note that, for a fixed x this implies that (fn(x))n≥1 satisfies Cauchy’s criterion
for convergence. Hence, it converges to a limit which we can call f(x). This
defines a function f on [a, b]. Now, given k, we note that if p ≥ nk+1, then

|f(x)− fp(x)| = lim(|fn(x)− fp(x)|)n≥1 ≤ 1/(k + 1) < 1/k

Hence, the sequence of functions (fn)n≥1 converges uniformly to f .

In particular, we note that if (fn)n≥1 is a uniformly convergent sequence of
continuous functions on the interval [a, b], then the limit function is defined on
[a, b] and is a continuous function on this interval.

Piecewise linear approximation
We would like to find a “good” approximation of a continuous function f on the
interval [a, b].

Given an error bar 1/k (typically k = 10r for (r− 1) places of decimal), we have
seen that there is an nk so that if |x− y| < 1/nk and x, y lie in [a, b] we have
|f(x)− f(y)|1/k.

Thus, it is enough to calculate f(a+p/nk) for values of p from 0 up to (b−a)/nk

(or the largest multiple of 1/nk less than it). This allows us to create a table of
values which can be used in place of evaluation of f for each given x. In other
words, given x in [a, b] we can take p to be the greatest integer less than (or
equal to) (x− a)nk; then f(a+ p/nk) is an approximation of f(x) with error at
most 1/k.

We may not be satisfied with this way of doing the approximation since these
approximate values give a “step” function that jumps at a+p/nk for each integer
p.

A different approach is to define a new function fk as follows. Let r be the integer
part of (b−a)nk and use the notation ap = a+p/nk for p = 0, . . . , r and ar+1 = b.
For x lying in the interval [ap, ap+1] we put t = (x− ap)/(ap+1 − ap) and note
that x = (1− t) · ap + t · ap+1. We then put fk(x) = (1− t)f(ap) + tf(ap+1). It
is clear that this function fk can easily be implemented as a program by giving
the table of values f(ap).

We note that this function satisfies fk(ap) = f(ap). For this reason, we say that
it “interpolates” the (values of the) function f at these points or that fk is a
piecewise linear interpolation of f .

As proved in the previous section, this function fk is continuous. Moreover, we
notice that for x in [ap, ap+1], we have

|f(x)− fk(x)| = |f(x)− ((1− t)f(ap) + tf(ap+1))|
≤ (1− t)|f(x)− f(ap)|+ t|f(x)− f(ap+1)|
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Since ap+1−ap ≤ 1/nk and x is “trapped” in between, we see that |f(x)−f(ap)| <
1/k and |f(x)− f(ap+1)| < 1/k. So, it follows that

|f(x)− fk(x)| ≤ (1− t)|f(x)− f(ap)|+ t|f(x)− f(ap+1)|
< (1− t)(1/k) + t(1/k) = 1/k

In other words, fk is uniformly close to f with error at most 1/k.

In summary, we have shown that there is a sequence (fk)k≥1 of piecewise linear
continuous functions that converges uniformly to a given continuous function f
on an interval [a, b].

Such an approximation is very useful when computing f at every point is very
difficult or computationally intensive and a good enough approximation will do.
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