Continuous Functions

1. For each of the following functions defined in the interval $(-1,1)$, find an n such that $\left|f_{p}(x)-f_{p}(y)\right|<1 / 5$ whenever x and y lie in this interval and satisfy $|x-y|<1 / n$.
(1 mark)
(a) $f_{1}(x)=x+2$
(1 mark)
(b) $f_{2}(x)=x^{2}+2$
(1 mark)
(c) $f_{3}(x)=1 /\left(x^{2}+2\right)$
(1 mark)
(d) $f_{4}(x)=(x+2) /\left(x^{2}+2\right)$
2. We are given a function f on $[0,1]$ so that for any x, y in this interval, we have $\mid f(x)-$ $f(y)|<3| x-y \mid$.
(a) Show that f is continuous in the interval $[0,1]$.
(b) At what points of $[0,1]$ will you compute f so that you get a table of values which you can use to get the approximate value of f up to an accuracy of $1 / 20$.
3. Suppose that f and g are given as continuous functions in some interval I of the number line.
(1 mark)
(1 mark)
(1 mark)
(1 mark)
(a) Show that the function $|f|$ defined by

$$
|f|(x)= \begin{cases}f(x) & \text { if } f(x) \geq 0 \\ -f(x) & \text { if } f(x)<0\end{cases}
$$

is a continuous function on I. (Hint: Use composition of continuous functions.)
(b) Define the functions f_{+}and f_{-}by

$$
f_{+}= \begin{cases}f(x) & \text { if } f(x) \geq 0 \\ 0 & \text { if } f(x)<0\end{cases}
$$

and

$$
f_{-}= \begin{cases}0 & \text { if } f(x) \geq 0 \\ -f(x) & \text { if } f(x)<0\end{cases}
$$

Show that $|f|=f_{+}+f_{-}$and $f=f_{+}-f_{-}$.
(c) Use the previous two parts to show that f_{+}and f_{-}are continuous functions on I.
(d) Use $h=f-g$ to denote the difference of the two functions and show that for all x in I,

$$
g(x)+h_{+}(x)=\max \{f(x), g(x)\}
$$

(e) Show that the function $\max \{f, g\}$ defined by

$$
(\max \{f, g\})(x)=\max \{f(x), g(x)\}
$$

is a continuous function in I. Similarly, for $\min \{f, g\}$.

