Solutions to Assignment 5

(3 marks)

1. Consider the following sequences
(a) The sequence $\left(a_{n}\right)_{n \geq 1}$ with

$$
a_{n}=n^{3} \cdot(3 / 4)-25 n^{2}
$$

(b) The sequence $\left(b_{n}\right)_{n \geq 1}$ with

$$
a_{n}=n^{3} \cdot(3 / 5)+50 \cdot n^{2}+10 n
$$

(c) The sequence $\left(c_{n}\right)_{n \geq 1}$ with

$$
c_{n}=\frac{3^{n}-100 \cdot n^{4}}{2^{n} \cdot 500}
$$

Which sequence dominates which sequence for large values of n ?

Solution: As seen in the notes, $(1+x)^{n}$ dominates any polynomial function of n for any $x>0$. Secondly,

$$
n^{3}(3 / 4)-n^{3}(3 / 5)+p \cdot n^{2}+q \cdot n+r=n^{3}(3 / 20)+p \cdot n^{2}+q \cdot n+r
$$

Since n^{3} dominates any $p n^{2}+q n+r$ for any fixed p, q and r, we see that the order (for n sufficiently large is):

$$
c_{n}>a_{n}>b_{n}
$$

2. Which of the following series of positive terms converges. Justify your answer by giving an upper bound for the sum.
(1 mark)
(1 mark)
(a) The series $\sum_{k=1}^{\infty}(6 / 7)^{k}$

Solution: By the sum of the geometric series, we have

$$
\sum_{k=1}^{n}(6 / 7)^{k}=\frac{6}{7} \cdot \frac{1-(6 / 7)^{k+1}}{1-(6 / 7)}=6\left(1-(6 / 7)^{k+1}\right)<6
$$

(b) The series $\sum_{k=0}^{\infty} 1 /(2 k+1)$

Solution: We have $1 /(2 k+1)>1 /(2 k+2)$. By the examination of the harmonic series in the notes, we have seen that

$$
\sum_{k=0}^{2^{n}-1}(1 / 2 k+2)=(1 / 2) \sum_{k=0}^{2^{n}-1} 1 /(k+1)=(1 / 2) \sum_{k=1}^{2^{n}}(1 / k) \geq(1 / 2)(1+(1 / 2) n)
$$

Thus, this sequence is unbounded.
(1 mark) (c) The series $\sum_{k=2}^{\infty} 1 /\left(k^{2}-1\right)$
Solution: We note $1 /\left((k+1)^{2}-1\right)<1 / k^{2}$. By the examination of the square harmonic series in the notes, we have seen that

$$
\sum_{k=1}^{2^{n}-1}\left(1 / k^{2}\right)=\sum_{k=1}^{2^{n}-1}\left(1 / k^{2}\right)<\sum_{k=0}^{n}\left(1 / 2^{k}\right)<2
$$

(3 marks) 3. Show that the following sequence is increasing and bounded above and below: $x_{1}=1$ and

$$
x_{n+1}=\frac{13 x_{n}+13}{x_{n}+13}
$$

(Hint: Compare x_{n}^{2} with 13.)

Solution: We note that $x_{1}^{2}<13$. We wish to show by induction that $x_{n}^{2}<13$. Assuming this for a given n, we calculate

$$
x_{n+1}^{2}-13=\frac{\left(13 x_{n}+13\right)^{2}-13\left(x_{n}+13\right)^{2}}{\left(x_{n}+13\right)^{2}}=\frac{156\left(x_{n}^{2}-13\right)}{\left(x_{n}+13\right)^{2}}<0
$$

This shows, by the principle of induction, that $x_{n}^{2}<13$ for all n.
If $x_{n} \geq 4$ for some n, then $x_{n}^{2} \geq 16$. Since $x_{n}^{2}<13$ for all n, this means that $x_{n}<4$ for all n.
We note that $x_{1}>0$. Assuming that $x_{n}>0$ for some n, the formula

$$
x_{n+1}=\frac{13 x_{n}+13}{x_{n}+13}
$$

shows that $x_{n+1}>0$. By induction, we see that $x_{n}>0$ for all n.
We calculate

$$
x_{n}-\frac{13 x_{n}+13}{x_{n}+13}=\frac{x_{n}^{2}-13}{x_{n}+13}<0
$$

It follows that $x_{n}<x_{n+1}$ for all n.
4. Define the sequences $\left(x_{n}\right)_{n \geq 1},\left(y_{n}\right)_{n \geq 1},\left(z_{n}\right)_{n \geq 1}$ as follows. First of all we have the identity

$$
z_{n}=\frac{2 x_{n}+3 y_{n}}{5}
$$

We define $x_{1}=2$ and $y_{1}=0$. Finally, x_{n} and y_{n} are defined defined as:

1. If $z_{n}^{3} \leq 5$, then $y_{n+1}=z_{n}$ and $x_{n+1}=x_{n}$.
2. If $z_{n}^{3}>5$, then $y_{n+1}=y_{n}$ and $x_{n+1}=z_{n}$.
(1 mark) (a) Show that $(2 a+3 b) / 5$ lies between a and b. (Correction: Original question had $(a+b) / 2$.)

Solution: If $a \geq b$ then

$$
a-\frac{2 a+3 b}{5}=\frac{3(a-b)}{5} \geq 0
$$

and

$$
b-\frac{a+b}{2}=\frac{2(b-a)}{5} \leq 0
$$

Similar argument in the case $a \leq b$.
(1 mark)
(b) Show by induction that $x_{n}>z_{n}>y_{n}$ for all n.

Solution: We have $x_{1}>y_{1}$, hence $x_{1}>z_{1}>y_{1}$. We will and prove by induction that $x_{n}>z_{n}>y_{n}$. Assume this for some n.
If $z_{n}^{3} \leq 5$, then $y_{n+1}=z_{n}$ and $x_{n+1}=x_{n}$. So we have $x_{n+1}>y_{n+1}$. Using the previous part we get $x_{n+1}>z_{n+1}>y_{n+1}$ as required.
If $z_{n}^{3}<5$, then $y_{n+1}=y_{n}$ and $x_{n+1}=z_{n}$. So we have $x_{n+1}>y_{n+1}$. Using the previous part we get $x_{n+1}>z_{n+1}>y_{n+1}$ as required.
(1 mark) (c) Show that $\left(x_{n}\right)_{n \geq 1}$ is an decreasing sequence and $\left(y_{n}\right)_{n \geq 1}$ is a increasing sequence. (Correction: The original question had "increasing" and "decreasing" interchanged!)

Solution: Since at every stage, either $x_{n+1}=x_{n}$ or $x_{n+1}=z_{n}<x_{n}$, we see that $\left(x_{n}\right)_{n \geq 1}$ is a decreasing sequence. Similarly $\left(y_{n}\right)_{n \geq 1}$ is an increasing sequence.
(1 mark) (d) Show by induction that $\left|x_{n}-y_{n}\right| \leq 2 \cdot(3 / 5)^{n-1}$. (Correction: The original question had $1 / 2^{n-2}$.)

Solution: We note that $x_{1}-y_{1}=2$. We also note that $z_{1}-y_{1}=1$ and $x_{1}-z_{1}=1$. By induction, we claim that

$$
x_{n}-y_{n} \leq 2 \cdot(3 / 5)^{n-1} ; z_{n}-y_{n} \leq 2 \cdot(3 / 5)^{n} ; x_{n}-z_{n} \leq 2 \cdot(3 / 5)^{n}
$$

Let us assume this for a given n. We note that in the case(2) above, we have

$$
\left(x_{n+1}, y_{n+1}\right)=\left(z_{n}, y_{n}\right)
$$

In the case(1) above, we have

$$
\left(x_{n+1}, y_{n+1}\right)=\left(x_{n}, z_{n}\right)
$$

So the first equality is obtained. Now, z_{n+1} is $\left(2 x_{n+1}+3 y_{n+1}\right) / 5$. So the next two inequalities follow as a consequence of the calculation in part (1) above.
(1 mark) (e) Show the following inequalities.

$$
\begin{aligned}
\lim \sup \left(z_{n}\right)_{n \geq 1} & \geq \sup \left(y_{n}\right)_{n \geq 1} \\
\lim \inf \left(z_{n}\right)_{n \geq 1} & \geq \inf \left(x_{n}\right)_{n \geq 1}
\end{aligned}
$$

Solution: We have seen above that $z_{n}-y_{n}>0$. This shows that $z_{n} \geq y_{n}$. It follows that $\sup \left(z_{n}\right)_{n \geq k} \geq \sup \left(y_{n}\right)_{n \geq k}$. Since $\left(y_{n}\right)_{n \geq 1}$ is increasing, we see that for all k, we have

$$
\sup \left(y_{n}\right)_{n \geq 1}=\sup \left(y_{n}\right)_{n \geq k}
$$

We now calculate

$$
\left.\limsup \left(z_{n}\right)_{n \geq 1}=\inf \left(\sup \left(z_{n}\right)_{n \geq k}\right)_{k \geq 1} \geq \inf \left(\sup \left(y_{n}\right)_{n \geq k}\right)_{k \geq 1}=\sup \left(y_{n}\right)_{n \geq 1}\right)
$$

The argument for z_{n} and x_{n} is similar.
(1 mark) (f) Show that all three sequences converge and have the same limit.
Solution: We have $x_{n}-y_{n} \leq 2 \cdot(3 / 5)^{n-1}$. Hence,

$$
\begin{aligned}
& \inf \left(x_{n}\right)_{n \geq 1}=\lim \left(x_{n}\right)_{n \geq 1} \\
& \quad=\lim \sup \left(x_{n}\right)_{n \geq 1} \leq \limsup \left(y_{n}+2 \cdot(3 / 5)^{n-1}\right)_{n \geq 1}=\limsup \left(y_{n}\right)_{n \geq 1}+0 \\
& =\limsup \left(y_{n}\right)_{n \geq 1}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \liminf \left(z_{n}\right)_{n \geq 1} \quad \leq \inf \left(x_{n}\right)_{n \geq 1} \leq \lim \sup \left(y_{n}\right)_{n \geq 1} \\
& \quad \leq \limsup \left(z_{n}\right)_{n \geq 1} \leq \liminf \left(z_{n}\right)_{n \geq 1}
\end{aligned}
$$

Hence, we have equality as required.

