Solutions

(3 marks) 1. Order the following sequences according eventual size (for large values of n).
(a) The sequence with general term $n^{2} \cdot(2 / 3)$

$$
2 / 3,8 / 3,6,32 / 3, \ldots
$$

(b) The sequence with general term $n^{2} \cdot(3 / 5)+100 \cdot n$

$$
503 / 5,1012 / 5,1527 / 5,2048 / 5, \ldots
$$

(c) The sequence with general term $2^{n} \cdot(1 / 500)-100 \cdot n$

$$
-24999 / 250,-24999 / 125,-37498 / 125,-49996 / 125, \ldots
$$

Solution: As seen in the notes, $(1+x)^{n}$ dominates any polynomial function of n for any $x>0$. Secondly,

$$
n^{2}(2 / 3)-n^{2}(3 / 5)-100 \cdot n=n^{2}(1 / 10)-100 \cdot n
$$

Since n^{2} dominates any an for any fixed n, we see that the order (for n sufficiently large is):

$$
\left(2^{n} \cdot(1 / 500)-100 \cdot n\right)>\left(n^{2}(2 / 3)\right)>\left(n^{2}(3 / 5)+100 \cdot n\right)
$$

1 Mark for each correct inequality and 1 Mark for justification.
2. Which of the following sequences is bounded above. If it is bounded above, give an upper bound.
(a) The sequence with general term $\sum_{k=1}^{n}(4 / 5)^{k}$

$$
4 / 5,36 / 25,244 / 125,1476 / 625,8404 / 3125, \ldots
$$

Solution: By the sum of the geometric series, we have

$$
\sum_{k=1}^{n}(4 / 5)^{k}=\frac{4}{5} \cdot \frac{1-(4 / 5)^{k+1}}{1-(4 / 5)}=4\left(1-(4 / 5)^{k+1}\right)<4
$$

1 Mark for correct bound. 1 Mark for justification.
(2 marks) (b) The sequence with general term $\sum_{k=1}^{n} 1 /(5 k)$

$$
1 / 5,3 / 10,11 / 30,5 / 12, \ldots
$$

Solution: By the examination of the harmonic series in the notes, we have seen that

$$
\sum_{k=1}^{2^{n}}(1 / 5 k)=(1 / 5) \sum_{k=1}^{2^{n}}(1 / k) \geq(1 / 5)(1+(1 / 2) n)
$$

Thus, this sequence is unbounded.
1 Mark for unboundedness. 1 Mark for justification.
(2 marks) (c) The sequence with general term $\sum_{k=1}^{n} 1 /\left(2 k^{2}\right)$

$$
1 / 2,5 / 8,49 / 72,205 / 288, \ldots
$$

Solution: By the examination of the square harmonic series in the notes, we have seen that

$$
\sum_{k=1}^{2^{n}-1}\left(1 / 2 k^{2}\right)=(1 / 2) \sum_{k=1}^{2^{n}-1}\left(1 / k^{2}\right)<(1 / 2) \sum_{k=0}^{n}\left(1 / 2^{k}\right)<1
$$

1 Mark for correct bound. 1 Mark for justification.
(3 marks) 3. Show that the following sequence is decreasing and bounded below: $x_{1}=4$ and

$$
x_{n+1}=\frac{4 x_{n}+11}{x_{n}+4}
$$

(Hint: Compare x_{n}^{2} with 11.)

Solution: We note that $x_{1}^{2}>11$. We wish to show by induction that $x_{n}^{2}>11$. Assuming this for a given n, we calculate

$$
x_{n+1}^{2}-11=\frac{\left(4 x_{n}+11\right)^{2}-11\left(x_{n}+4\right)^{2}}{\left(x_{n}+4\right)^{2}}=\frac{5 x_{n}^{2}-55}{\left(x_{n}+4\right)^{2}}>0
$$

This shows, by the principle of induction, that $x_{n}^{2}>11$ for all n. 1 Mark for this proof.

Since $x_{n}>0$ for all n (also by induction!), it follows that $x_{n}>3$ for all n. 1 Mark for a correct bound.

We calculate

$$
x_{n}-\frac{4 x_{n}+11}{x_{n}+4}=\frac{x_{n}^{2}-11}{x_{n}+4}>0
$$

It follows that $x_{n}>x_{n+1}$ for all n. 1 Mark for this proof.
4. We define $x_{1}=1$ and $y_{1}=2$. We then iteratively define $z_{n}=\left(x_{n}+y_{n}\right) / 2$ for $n \geq 1$, where x_{n} and y_{n} are defined as:

1. If $z_{n}^{3} \leq 7$, then $x_{n+1}=z_{n}$ and $y_{n+1}=y_{n}$.
2. If $z_{n}^{3}>7$, then $x_{n+1}=x_{n}$ and $y_{n+1}=z_{n}$.
(a) Show that $\left(y_{n}-x_{n}\right)_{n \geq 1}$ is a decreasing sequence with greatest lower bound 0 .

Solution: We note that $y_{1}-x_{1}=1$. We also note that $z_{1}-x_{1}=1 / 2$ and $y_{1}-z_{1}=1 / 2$. By induction, we claim that

$$
y_{n}-x_{n}=1 / 2^{n} ; z_{n}-x_{n}=1 / 2^{n+1} ; y_{n}-z_{n}=1 / 2^{n+1}
$$

Let us assume this for a given n. We note that in the case(1) above, we have

$$
\left(x_{n+1}, y_{n+1}\right)=\left(z_{n}, y_{n}\right)
$$

In the case(2) above, we have

$$
\left(x_{n+1}, y_{n+1}\right)=\left(x_{n}, z_{n}\right)
$$

So the first equality is obtained. Now, z_{n+1} is the mid-point of x_{n+1} and y_{n+1} so the next two inequalities follow as well. It follows that $y_{n}-x_{n}$ is decreasing to 0 .
(1 mark) (b) Show one of the following inequalities. (The other one is similar!)

$$
\begin{aligned}
& \limsup \left(z_{n}\right)_{n \geq 1} \geq \limsup \left(x_{n}\right)_{n \geq 1} \\
& \lim \inf \left(z_{n}\right)_{n \geq 1} \leq \lim \inf \left(y_{n}\right)_{n \geq 1}
\end{aligned}
$$

(The question had \geq in the second line. Bonus for the students who pointed it out!)

Solution: We have seen above that $z_{n}-x_{n}>0$. This shows that $z_{n} \geq x_{n}$. It follows that $\sup \left(z_{n}\right)_{n \geq k} \geq \sup \left(x_{n}\right)_{n \geq k}$. Hence,

$$
\lim \sup \left(z_{n}\right)_{n \geq 1}=\inf \left(\sup \left(z_{n}\right)_{n \geq k}\right)_{k \geq 1} \geq \inf \left(\sup \left(x_{n}\right)_{n \geq k}\right)_{k \geq 1}=\lim \sup \left(x_{n}\right)_{n \geq 1}
$$

The argument for z_{n} and y_{n} is similar.
(c) Show that $\left(z_{n}\right)_{n \geq 1}$ converges.

Solution: We have $y_{n}-x_{n}=\left(1 / 2^{n}\right)$. Hence,

$$
\left.\begin{array}{rl}
\liminf \left(y_{n}\right)_{n \geq 1} & \leq \lim \sup \left(y_{n}\right)_{n \geq 1} \\
& =\limsup \left(x_{n}+\left(1 / 2^{n}\right)\right)_{n \geq 1}=\lim \sup \left(x_{n}\right)_{n \geq 1}
\end{array}\right)
$$

Thus,

$$
\begin{aligned}
\liminf \left(z_{n}\right)_{n \geq 1} & \\
\quad \leq \liminf \left(y_{n}\right)_{n \geq 1} \leq & \lim \sup \left(x_{n}\right)_{n \geq 1} \\
& \leq \lim \sup \left(z_{n}\right)_{n \geq 1} \leq \liminf \left(z_{n}\right)_{n \geq 1}
\end{aligned}
$$

Hence, we have equality as required.

