Solutions to Assignment 4

1. Find the limit superior and the limit inferior of the following sequences. (You may use limit calculations from the notes.)
(1 mark)
(1 mark)
(1 mark)
(a) $\left(1+\frac{1}{n}\right)_{n \geq 1}$

Solution: We note that $1+1 / n$ is a decreasing sequence with greatest lower bound 1. Hence, both limit superior and limit inferior are 1.
A different approach is as follows.
We note that $\sup ((1+1 / n))_{n \geq k}=1+1 / k$. It follows that $\lim \sup (1+1 / n)_{n \geq 1}=$ $\inf (1+1 / k)_{k \geq 1}=1$.
We note that $\inf ((1+1 / n))_{n \geq k}=1$. It follows that $\liminf (1+1 / n)_{n \geq 1}=$ $\inf (1)_{k \geq 1}=1$.
(b) $\left((-1)^{n+1}+\frac{(-1)^{n}}{n}\right)_{n \geq 1}$

Solution: We note that

$$
\left.x_{n}=(-1)^{n+1}+(-1)^{n} / n\right)= \begin{cases}1-1 / n & n \text { odd } \\ -1+1 / n & n \text { even }\end{cases}
$$

It follows that the supremum of $\left(x_{n}\right)_{n \geq k}$ is 1 . Hence, the limit superior of this sequence is 1 .
Similarly, the infimum of $\left(x_{n}\right)_{n \geq k}$ is -1 . Hence, the limit inferior of this sequence is -1 .
(c) $\left(\left(1+\frac{1}{n}\right)^{n}-\left(1+\frac{1}{n}\right)\right)_{n \geq 1}$

Solution: We note that

$$
x_{n}=\left(1+\frac{1}{n}\right)^{n}-1-\frac{1}{n}
$$

We have already shown that $(1+(1 / n))^{n}$ is increasing with n and is bounded. Let e denote its least upper bound. We have also seen that $-\frac{1}{n}$ is increasing with n with least upper bound 0 . From the principle of addition of least upper bounds we see that for all k, we have

$$
\sup \left(x_{n}\right)_{n \geq k}=e-1-0=e-1
$$

Since the sequence is increasing, we see that

$$
\inf \left(x_{n}\right)_{n \geq k}=x_{k}
$$

It follows that $\lim \sup \left(x_{n}\right)_{n \geq 1}=e-1$ and also

$$
\liminf \left(x_{n}\right)_{n \geq 1}=\sup \left(x_{k}\right)_{k \geq 1}=e-1
$$

(1 mark)
(1 mark)
(d) $\frac{n-2}{n^{2}+2 n+1}$

Solution: We note that

$$
x_{n}=\frac{1}{n+2+\frac{1}{n}}-\frac{2}{n^{2}+2 n+1}
$$

Hence $x_{n} \leq(1 / n)$ and $x_{n} \geq-\left(2 / n^{2}\right)$. It follows that

$$
\begin{array}{lr}
\sup \left(x_{n}\right)_{n \geq k} \leq \sup (1 / n)_{n \geq k} & =1 / k \\
\sup \left(x_{n}\right)_{n \geq k} \geq \sup \left(-2 / n^{2}\right)_{n \geq k} & =0
\end{array}
$$

We then take infimum of both sides to get

$$
\begin{array}{ll}
\lim \sup \left(x_{n}\right)_{n \geq 1} \leq \inf (1 / k)_{k \geq 1} & =0 \\
\limsup \left(x_{n}\right)_{n \geq 1} \geq \inf (0)_{k \geq 1} & =0
\end{array}
$$

Thus, we see that $\lim \sup \left(x_{n}\right)_{n \geq 1}=0$.
A similar argument shows that $\lim \inf \left(x_{n}\right)_{n \geq 1}=0$.
(e) $\frac{n^{2}-(-1)^{n} 2 n-1}{n^{2}+2 n+1}$

Solution: We note that

$$
x_{n}=\frac{1}{1+\frac{2}{n}+\frac{1}{n^{2}}}-(-1)^{n} \frac{2}{n+2+\frac{1}{n}}-\frac{1}{n^{2}+2 n+1}
$$

Hence $x_{n} \leq 1+(2 / n)$. Further, for any t such that $0<t<1$, we have $1>$ $(1+t)(1-t)$ so $1 /(1+t)>1-t$. Now, for $n>3$, we have $0<(2 / n)+\left(1 / n^{2}\right)<1$ so

$$
\frac{1}{1+\frac{2}{n}+\frac{1}{n^{2}}} \geq 1-\frac{2}{n}-\frac{1}{n^{2}}
$$

So, for $n \geq 3$, we get

$$
x_{n} \geq 1-\frac{4}{n}-\frac{2}{n^{2}}
$$

It follows that for $k>3$,

$$
\begin{array}{lr}
\sup \left(x_{n}\right)_{n \geq k} \leq \sup (1+(2 / n))_{n \geq k} & =1+2 / k \\
\sup \left(x_{n}\right)_{n \geq k} \geq \sup \left(1-(4 / n)-\left(2 / n^{2}\right)\right)_{n \geq k} & =1
\end{array}
$$

We then take infimum of both sides to get

$$
\begin{aligned}
\lim \sup \left(x_{n}\right)_{n \geq 1} \leq \inf (1+2 / k)_{k \geq 1} & & =1 \\
\limsup \left(x_{n}\right)_{n \geq 1} \geq \inf (1)_{k \geq 1} & & =1
\end{aligned}
$$

Thus, we see that $\lim \sup \left(x_{n}\right)_{n \geq 1}=1$.
A similar argument shows that $\lim \inf \left(x_{n}\right)_{n \geq 1}=1$.
(1 (bonus))
(1 (bonus))
(1 mark)
2. Show that the following sequences have a limit.
(a) The sequence $\left(x_{n}\right)_{n \geq 1}$ where

$$
x_{n}=1+\frac{2}{n}+\frac{3}{n^{2}}
$$

Solution: The sequence $(1 / n)_{n \geq 1}$ has a limit (which is 0). It follows that $\left(1 / n^{2}=(1 / n)^{2}\right)_{n \geq 1}$ has a limit (which is also $0!$). Since limits are preserved under addition and multiplication, we see that

$$
\lim \left(x_{n}\right)_{n \geq 1}=\lim (1)_{n \geq 1}+\lim (2 / n)_{n \geq 1}+\lim \left(3 / n^{2}\right)_{n \geq 1}
$$

Hence, the limit exists (and is equal to 1).
(1 mark) (b) The sequence $\left(x_{n}\right)_{n \geq 1}$ where

$$
x_{n}=\frac{1+2 \frac{1}{n}+3 \frac{1}{n^{2}}}{1-2 \frac{1}{n}+3 \frac{1}{n^{2}}-4 \frac{1}{n^{3}}}
$$

Solution: The sequence $(1 / n)_{n \geq 1}$ has a limit (which is 0). It follows that $\left(1 / n^{2}=(1 / n)^{2}\right)_{n \geq 1}$ has a limit (which is also 0 !). Similarly, the sequence $\left(1 / n^{3}=\right.$ $\left.(1 / n)\left(1 / n^{2}\right)\right)_{n \geq 1}$ has a limit. We define

$$
\begin{aligned}
& a_{n}=1+2 \frac{1}{n}+3 \frac{1}{n^{2}} \\
& b_{n}=1-2 \frac{1}{n}+3 \frac{1}{n^{2}}-4 \frac{1}{n^{3}}
\end{aligned}
$$

Since limits are preserved under addition, subtraction and multiplication, we see that

$$
\begin{aligned}
\lim \left(a_{n}\right)_{n \geq 1} & =\lim (1)_{n \geq 1}+\lim (2 / n)_{n \geq 1}+\lim \left(3 / n^{2}\right)_{n \geq 1} \\
\lim \left(b_{n}\right)_{n \geq 1} & =\lim (1)_{n \geq 1}-\lim (2 / n)_{n \geq 1}+\lim \left(3 / n^{2}\right)_{n \geq 1}-\lim \left(4 / n^{3}\right)_{n \geq 1}
\end{aligned}
$$

Moreover, the limit of b_{n} is 1 which is positive. Hence, there is an n_{0} such that b_{n} is positive for $n \geq n_{0}$. For such n we know that the limit is preserved under division. Hence the limit of $\left(x_{n}\right)$ exists and is given by the formula below.

$$
\lim \left(x_{n}\right)_{n \geq n_{0}}=\frac{\lim \left(a_{n}\right)_{n \geq n_{0}}}{\lim \left(b_{n}\right)_{n \geq n_{0}}}
$$

(1 mark) (c) The sequence $\left(x_{n}\right)_{n \geq 1}$ where

$$
x_{n}=1+2\left(5+\frac{1}{n}\right)+3\left(5+\frac{1}{n}\right)^{2}
$$

Solution: The sequence $(1 / n)_{n \geq 1}$ has a limit. It follows that $(5+1 / n)_{n \geq 1}$ has a limit. Hence, the sequence $\left((\overline{5}+1 / n)^{2}\right)_{n \geq 1}$ has a limit. By the addition of limits, we obtain

$$
\lim \left(x_{n}\right)_{n \geq 1}=1+2 \lim ((5+1 / n))_{n \geq 1}+3 \lim \left((5+1 / n)^{2}\right)_{n \geq 1}+
$$

Hence the limit of $\left(x_{n}\right)$ exists and is equal to $1+2 \cdot 5+3 \cdot 5^{2}=86$.
(1 mark) (d) The sequence $\left(x_{n}\right)_{n \geq 1}$ where

$$
x_{n}=\frac{1}{1+2\left(5+\frac{1}{n}\right)+3\left(5+\frac{1}{n}\right)^{2}}
$$

Solution: As seen above, the limit of the denominator exists and is not zero. By the division of limits for positive limits, we see that $\left(x_{n}\right)$ has a limit.
(1 mark)
(e) $\left(\left(1+\frac{1}{n+1}\right)^{n}\right)_{n \geq 1}$

Solution: We note that

$$
\left(1+\frac{1}{n+1}\right)^{n}=\frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n+1}\right)}
$$

Now the numerator is an increasing bounded sequence. Hence, it has a least upper bound which is also its limit. The denominator is a decreasing bound sequence wih greatest lower bound 1 which is also its limit. Thus, by the preservation of limits under division by a sequence with a positive limit, we see that the above sequence also has a limit.

