Analysis in One Variable MTH102

Solutions to Assignment 3

1. Which of the following series is convergent and which diverges to infinity?

(1 mark) (

(a) $\sum_{n=1}^{\infty} \frac{1}{n+20}$

Solution: We note that this series is

 $\frac{1}{21} + \frac{1}{22} + \cdots$

So it is the same as

$$-\sum_{n=1}^{20}\frac{1}{n} + \sum_{n=1}^{\infty}\frac{1}{n}$$

The first term above is a fixed constant since it has finitely many terms. The second is a series that diverges to infinity. So the sum of the two terms also diverges to infinity.

(1 mark) (b)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2}$$

$$\frac{n+1}{n^2} > \frac{1}{n}$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n^2} > \sum_{n=1}^{\infty} \frac{n+$$

 $\frac{1}{n}$

Since the right-hand side diverges to infinity, so does the left-hand side.

(1 mark) (c)
$$\sum_{n=0}^{\infty} \frac{x^n}{n+1}$$
 for $0 < x < 1$.

Solution: We note that $\frac{x^n}{n+1} \le x^n$

It follows that

It follows that

$$\sum_{n=0}^{\infty} \frac{x^n}{n+1} \le \sum_{n=0}^{\infty} x^n$$

Since the right-hand side converges, so does the left-hand side.

1 mark) (d)
$$\sum_{n=1}^{\infty} x^{n-n^2}$$
 for $0 < x < 1$

Solution: We note that, for 0 < x < 1, and $m \ge 0$, we have $x^m \le 1$. Now, $n^2 \ge n$ for $n \ge 1$, so $x^{n^2-n} \le 1$. It follows that $x^{n^2} \le x^n$, and equivalently

 $x^{n-n^2} \ge 1$. Hence,

$$\sum_{n=0}^{\infty} x^{n-n^2} \geq \sum_{n=0}^{\infty} 1$$

Since the right-hand side diverges to infinity, so does the left-hand side.

(1 mark) (e)
$$\sum_{n=1}^{\infty} x^{n^2 - n}$$
 for $0 < x < 1$

Solution: We have, for $n \ge 2$, $n-1 \ge 1$. If 0 < x < 1, then $x^n < 1$ for $n \ge 2$. If $k \ge 1$, we then get $(x^n)^k \le x^n$ as above. In particular, we get $(x^n)^{n-1} \le x^n$ and we note that $x^{n^2-n} = (x^n)^{n-1}$. Hence

$$\sum_{n=1}^{\infty} x^{n^2 - n} = 1 + \sum_{n=2}^{\infty} x^{n^2 - n} \le 1 + \sum_{n=2}^{\infty} x^n$$

Since the latter series converges, it follows that the first series converges as well.

(1 mark) (f)
$$\sum_{n=0}^{\infty} \frac{x^n}{n^4}$$
 for $x > 1$.

Solution: Since x > 1, we have seen that $x^n > n^4$ for sufficiently large n. Let n_0 be such that $x^n > n^4$ for $n > n_0$. It follows that

$$\sum_{n=0}^{\infty} \frac{x^n}{n^4} > \sum_{n=0}^{n_0} \frac{x^n}{n^4} + \sum_{n=n_0+1}^{\infty} 1$$

Since the second term on the right-hand side diverges to infinity, so does the left-hand side.

(1 (bonus)) (g)
$$\sum_{n=1}^{\infty} n \cdot x^n$$
 for $0 < x < 1$.

(a) $1 - \frac{n+1}{2n^2 - n}$

2. Which of the following sequences is eventually increasing and is bounded above?

Solution: We first see that

$$(n+1)(2(n+1)^2 - (n+1)) = (n^2 + 2n + 1)(2n - 1)$$

= $2n^3 + 3n^2 - 1$
> $2n^3 + 3n^2 - 2n$
= $(n+2)(2n^2 - n)$

This shows that the sequence $\frac{n+1}{2n^2-n}$ is decreasing. Hence, $1 - \frac{n+1}{2n^2-n}$ is increasing. Next, we note that $\frac{n+1}{2n^2-n} > 0$ for $n \ge 2$. Hence, this sequence is bounded above. (1 mark)

rk) (b) $(1 + \frac{n}{n^2 + 1})^n$

Solution: We note that

$$\left(1 + \frac{n}{n^2 + 1}\right)^n = \sum_{k=0}^n \left(\frac{n^k}{(n^2 + 1)^k} \cdot \frac{n(n-1)\cdots(n-k+1)}{k!}\right)$$

We note that, for $0 \le a \le n$

$$(n-a) \cdot \frac{n}{n^2+1} = \left(1 - \frac{a}{n}\right) \cdot \frac{1}{1 + \frac{1}{n^2}}$$

Now, for m > n, we have

$$\begin{aligned} &\frac{a}{n} > \frac{a}{m} \\ &1 - \frac{a}{n} < 1 - \frac{a}{n} \\ &1 + \frac{1}{n^2} > 1 + \frac{1}{m^2} \\ &\frac{1}{1 + \frac{1}{n^2}} < \frac{1}{1 + \frac{1}{m^2}} \end{aligned}$$

It follows that

$$\frac{n^k}{(n^2+1)^k} \cdot \frac{n(n-1)\cdots(n-k+1)}{k!} < \frac{m^k}{(m^2+1)^k} \cdot \frac{m(m-1)\cdots(m-k+1)}{k!}$$

Thus the sequence is increasing. We also note that $n/(n^2+1) < 1/n$, so

$$\left(1+\frac{n}{n^2+1}\right)^n < \left(1+\frac{1}{n}\right)^n$$

Since the latter sequence is bounded, so is the first sequence.

(1 mark) (c) The sequence with $x_1 = 1$ and

$$x_{n+1} = \frac{2x_n + 1}{x_n + 1}$$

Solution: We note that $x_2 = 3/2 > x_1$. Now, assume that we are given

 $x_{n+1} > x_n$. This means that

$$\frac{2x_n+1}{x_n+1} > x_n$$

$$2x_n+1 > x_n^2 + x_n$$

$$x_n+1 > x_n^2$$

We then check

$$x_{n+1} + 1 - x_{n+1}^2 = \frac{2x_n + 1}{x_n + 1} + 1 - \left(\frac{2x_n + 1}{x_n + 1}\right)^2$$
$$= \frac{(3x_n + 2)(x_n + 1) - (x_n + 1)^2}{(x_n + 1)^2}$$
$$= \frac{x_n + 1 - x_n^2}{(x_n + 1)^2} > 0$$

It follows that

$$x_{n+2} = \frac{2x_{n+1} + 1}{x_{n+1} + 1} > x_{n+1}$$

Thus, by the principle of induction, the sequence is increasing. It follows that we have $x_n \ge 1$ for all n. Hence,

$$x_{n+1} = \frac{2x_n + 1}{x_n + 1} = 2 - \frac{1}{x_n + 1} < 2$$

for all n. So the sequence is bounded.

(1 mark) (d) The sequence with $x_1 = 1$ and

$$x_{n+1} = \frac{2x_n + 3}{x_n + 2}$$

Solution: We check that $x_2 = 5/3 > x_1$. Let us assume that $x_{n+1} > x_n$ for some *n*. This means

$$\frac{2x_n+3}{x_n+2} > x_n$$
$$2x_n+3 > x_n^2+2x_n$$
$$3 > x_n^2$$

We then check

$$3 - x_{n+1}^2 = 3 - \left(\frac{2x_n + 3}{x_n + 2}\right)^2$$

= $\frac{3(x_n + 2)^2 - (2x_n + 3)^2}{(x_n + 2)^2}$
= $\frac{3x_n^2 + 12x_n + 12 - (4x_n^2 + 12x_n + 9)}{(x_n + 2)^2}$
= $\frac{3 - x_n^2}{(x_n + 2)^2} > 0$

It follows that

$$\begin{aligned} x_{n+2} - x_{n+1} &= \frac{2x_{n+1} + 3}{x_{n+1} + 2} - x_{n+1} \\ &= \frac{(2x_{n+1} + 3 - (x_{n+1}^2 + 2x_{n+1}))}{x_{n+1} + 2} \\ &= \frac{3 - x_{n+1}^2}{(x_{n+1} + 2)} > 0 = \frac{3 - x_n^2}{(x_n + 2)^2} > 0 \end{aligned}$$

By the principle of induction, we see that x_n is an increasing sequence and it is bounded above by 2.