
Limits
So far, we have studied increasing sequences (or, with a minus sign, decreasing
sequences). What about sequences that are not monotonic? Such sequences
arise for measurement reasons as well as mathematical reasons.

A measurement does not always approach the “exact” value from one side. As
someone who has done experiments will testify, sometimes one overshoots the
target and at other times one goes below.

Mathematically, we note that if (xn)n≥1 and (yn)n≥1 are increasing sequences
of positive numbers then (xn − yn)n≥1 and (xn/yn)n≥1 need not be increasing
or decreasing. However, in both cases, we would like to calculate what happens
“as n goes to infinity”.

In this section we will study some properties of such, more general, sequences.

Supremum and Infimum
Given a bounded (above and below) sequence (xn)n≥1, we can define a new
sequence by defining

yn = max{x1, . . . , xn}

We can always find the maximum of a finite set of numbers by pair-wise com-
parison. Indeed, we note that y1 = x1. Having found yn, we put yn+1 =
max{yn, xn+1} which is just a pair-wise comparison.Now, by the last identity it
is clear that (yn)n≥1 is a bounded non-decreasing sequence. So, it has a least
upper bound y. We define the supremum of (xn)n≥1 to be y.

First of all, we note that y ≥ yn ≥ xn for all n. Next, if z < y, then, since
y is the least upper bound of (yn)n≥1, there is a p for which yp > z. Since
yp = max{x1, . . . , xp}, we see that yp = xq for some q between 1 and p. It
follows that z > xq. In other words, we have also shown that y is the smallest
number which is an upper bound for (xn)n≥1. We just use a different word
“supremum” and notation sup(xn)n≥1 to make it clear that we are not assuming
that xn is increasing.

As a word of warning, we note that if we have a finite collection of numbers
{x1, . . . , xn}, then the maximum of these is one of the xq’s. However, for an
infinite sequence (xn)n≥1, there is no reason why sup(xn)n≥1 should be one of
these numbers. In fact, it is very often not one of them! This is why we use a
different word from “maximum”.

We similarly definite the infimum inf(xn)n≥1 to be − sup(−xn)n≥1. We note
that if wn = max{−x1, . . . , xn}, then −wn = min{x1, . . . , xn}. It follows that
−wn is decreasing and its greatest lower bound is the negative of the least upper
bound of wn. So, we see that inf(xn)n≥1 ≤ xn and is the largest number with
this property.
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We note that these two definitions extend the notions of least upper bound of an
increasing sequence and greatest lower bound of a decreasing sequence to more
general sequences.

Limit supremum, limit infimum and limit
Given a bounded sequence (xn)n≥1, consider the sequence (xn+1)n≥1. We note
that if

zn = max{x2, . . . , xn+1}
then zn ≤ yn+1, where yn+1 = max{x1, . . . , xn+1}. It follows that the least
upper bound of (zn)n≥1 is less than or equal to the least upper bound of (yn)n≥1.
In terms of the definitions given in the previous section we see that

sup(xn+1)n≥1 ≤ sup(xn)n≥1

Equivalently, we note that

sup(xn)n≥2 ≤ sup(xn)n≥1

If we use the notation sk = sup(xn)n≥k, then this shows that (sk)k≥1 is a
(bounded) non-increasing sequence. Hence, it has a greatest lower bound s =
inf(sk)k≥1. We define

lim sup(xn)n≥1 = inf(sup(xn)n≥k)k≥1

and call it the limit supremum (or limit superior) of xn. Similarly,

lim inf(xn)n≥1 = sup(inf(xn)n≥k)k≥1

Finally, we say that a sequence (xn)n≥1 has a limit x if

lim sup(xn)n≥1 = lim inf(xn)n≥1 = x

In this case, we use the notation lim(xn)n≥1 = x and say that the sequence
(xn)n≥1 has limit x.

Simplest example

Given a sequence (xn)n≥1 and a number x with the property that, for all n we
have x− 1/n ≤ xn ≤ x + 1/n.

First of all we note that

x = sup(x− 1/n)n≥k ≤ sup(xn)n≥k ≤ sup(x + 1/n)n≥k = x + 1/k

Hence,
x ≤ inf(sup(xn)n≥k)k≥1 ≤ inf(x + 1/k)k≥1 = x

This shows that lim sup(xn)n≥1 = x. We similarly show that lim inf(xn)n≥1 = x.

In other words, given a sequence (xn)n≥1 with the property that for all n, we
have |xn − x| ≤ 1/n, the limit of the sequence is x.
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Subsequences
Given a sequence (xn)n≥1 and a sequence of natural numbers

n1 < n2 < n3 < · · ·

we can form a new sequence by defining yp = xnp . This sequence (yp)p≥1 is
called a subsequence of the sequence (xn)n≥1.

Since n1 is a natural number, we have n1 ≥ 1. Given that np ≥ p, we note that
np+1 is a natural number greater than np. So np+1 ≥ np + 1 ≥ p + 1. By the
principle of induction, we see that np ≥ p.

As a consequence we see

sup(yp)p≥k = sup(xnp
)p≥k ≤ sup(xn)n≥k

It follows that

lim sup(yp)p≥1 = inf(sup(yp)p≥k)k≥1 ≤ inf(sup(xn)n≥k)k≥1 = lim sup(xn)n≥1

In words, the limit superior of a sequence is greater than or equal to the limit
superior of a subsequence.

Similarly, we show that

lim inf(yp)p≥1 ≥ lim inf(xn)n≥1

In words, the limit inferior of a sequence is less than or equal to the limit inferior
of a subsequence.

Now, suppose that x = lim sup(xn)n≥1. By definition, if sp = sup(xn)n≥p, then
x = inf(sp)p≥1. Since x is the greatest lower bound of sp (which is decreasing
sequence), it follows that for each k, there is a pk so that sp ≤ x + 1/k for all
p ≥ pk. By the definition of sp, there is an nk ≥ p so that xnk

≥ sp − 1/k. Now,
x ≤ sp so x− 1/k ≤ sp − 1/k ≤ xnk

. Moreover, xnk
≤ sp ≤ x + 1/k. So we see

that |xnk
− x| ≤ 1/k. Furthermore, we can choose p ≥ pk and p > nk−1, so we

can ensure nk is an increasing sequence of natural numbers.

In other words, we have found an increasing sequence (nk)k≥1 of natural numbers
so that the subsequence (xnk

)k≥1 of xn has the property |xnk
− x| ≤ 1/k. As

seen above, this means that this subsequence has limit x.

If x = lim sup(xn)n≥1, then there is a subsequence (xnk
)k≥1 which

has limit x.

Similarly, we can prove

If x = lim inf(xn)n≥1, then there is a subsequence (xnk
)k≥1 which

limit x.

One can state the results of this subsection in a consolidated fashion as follows.
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The limit superior of a sequence is the largest number that is the
limit of a subsequence.

Similarly,

The limit inferior of a sequence is the smallest number that is the
limit of a subsequence.

Convergence property
Given that a sequence (xn)n≥1 has a limit and that limit is x. If we define

sp = sup(xn)n≥p

rq = inf(xn)n≥q

Then, x is the greatest lower bound of (sp)p≥1 and is also the least upper bound
of (rq)q≥1. Given a natural number k, this means that there is a pk so that
sp ≤ x + 1/k for all p ≥ pk. Similarly, there is a qk so that rq ≥ x− 1/k for all
q ≥ qk. So, if n ≥ nk = max{pk, qk}, then sn ≤ x + 1/k and rn ≥ x− 1/k.

Now, by definition of sn, we have xn ≤ sn. So xn ≤ x+1/k for n ≥ nk. Similarly,
by definition of rn, we have xn ≥ rn. So xn ≥ x− 1/k for n ≥ nk.

In other words, we have shown that, if the sequence (xn)n≥1 has a limit x, then
for all k, there is an nk so that |xn − x| ≤ 1/k for n ≥ nk. So, all but a finite
number of terms of the sequence are within 1/k of the limit of the sequence.
This allows us to think of the limit in terms of distance. So we also use the
phrase (xn)n≥1 converges to its limit x.

Note that, we have already proved the converse of this statement above as the
simplest example of a sequence with a limit.

Cauchy Criterion
We first want to show that if two convergent sequences are “eventually” arbitrarily
close to each other, then they have the same limit. More precisely, given two
convergent sequences (xn)n≥1 and (yn)n≥1 that converge to x and y respectively.
Further assume that, for every k, there is an nk so that |xn − yn| ≤ 1/k for
n ≥ nk. We want to show that x = y.

We note that xn ≤ yn + 1/k for all n ≥ nk. This means that

sup(xn)n≥p ≤ sup(yn)n≥p + 1/k for p ≥ nk

It follows that for all k, we have

x = lim sup(xn)n≥p ≤ y = lim sup(yn)n≥p + 1/k

This means that x ≤ y. By interchanging the roles of (xn) and (yn) we see that
y ≤ x. Thus, we have x = y.
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Now suppose that (xn)n≥1 is a sequence satisfying (the Cauchy property),

for every natural number k, there is an nk so that |xp − xq| ≤ 1/k
for p, q ≥ nk.

In other words, all but finitely many terms of the sequence are (pairwise) within
1/k of each other. We claim that the sequence has a limit. Let r = lim sup(xn)n≥1
and s = lim inf(xn)n≥1. We want to prove that r = s.

As seen above, there is a subsequence (yk) = (xpk
)k≥1 for which r is the limit

and there is a subsequence (zk) = (xqk
)k≥1 for which s is the limit. Given a

natural number k, from the Cauchy property, we see that if we choose m ≥ nk,
then pm ≥ m ≥ nk and qm ≥ m ≥ nk. It follows that |ym − zm| ≤ 1/k for all
such m. By what has been proved above, we see that r = s is the limit of the
sequence (xn)n≥1.

Subtraction and division
Subtraction is just addition of the negative of a number and division is just
multiplication of the reciprocal. So, what we need is to prove the arithmetic
properties of the limit.

Given two convergent sequences (xn)n≥1 and (yn)n≥1 that converge to x and y
respectively. We want to show that (xn + yn)n≥1 converges to x + y. As seen
above, for each k, there is a pk so that |xp − x| ≤ 1/(2k) for p ≥ pk and there is
a qk so that |yp − y| ≤ 1/(2k) for q ≥ qk. So, if n ≥ nk = max{pk, qk}, we have

|(xn + yn)− (x + y)| ≤ |xn − x|+ |yn − y| ≤ 1/k for n ≥ nk

As seen above, this means that xn + yn converges to x + y.

In this proof we have used the triangle inequality

|a + b| ≤ |a|+ |b|

which is an important ingredient in many proofs in analysis.

Given two convergent sequences (xn)n≥1 and (yn)n≥1 that converge to x and y
respectively. We want to show that (xn · yn)n≥1 converges to x · y. As above,
for each k, we want to find nk such that |(xn · yn)− (x · y)| ≤ 1/k for n ≥ nk.

Since (xn)n≥1 and (yn)n≥1 have limits x and y, the collection of all these numbers
is bounded. By the Archimedean principle, there is a natural number M so that
|xn| ≤ M for all n and |yn| ≤ M for all n; we also assume that |x| ≤ M and
|y| ≤M .

Since (xn)n≥1 converges to x, there is a pk so that |xn − x| ≤ 1/(2kM) for all
n ≥ pk. Similarly, there is a qk so that |yn − y| ≤ 1/(2kM) for all n ≥ qk. It
follows that, if n ≥ nk max{pk, qk}, then

|xn · yn − x · y| ≤ |(xn − x)||yn|+ |x||(yn − y)| ≤ 1/k
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as required.

To complete the argument for subtraction, we note that if (xn)n≥1 has limit x,
then

−x = − lim sup(xn)n≥1 = lim inf(−xn)n≥1

and
−x = − lim inf(xn)n≥1 = lim sup(−xn)n≥1

Hence, (−xn)n≥1 has limit −x.

To complete the argument for division, we need to examine the sequence
(1/xn)n≥1 when we are given a sequence (xn)n≥1 with limit x. (Note that
some terms of this sequence may not even be meaningful since xn may be 0 for
some n!)

First, we need to put the condition x 6= 0, since division by 0 is not permissible.
Now, by using the previous paragraph, we can assume that x > 0, replacing x by
−x if necessary. By the Archimedean principle, there is a natural number M so
that x ≥ 2/M . Since (xn)n≥1 has limit x, there is a n0 so that |xn − x| ≤ 1/M
for all n ≥ n0. It follows that xn ≥ x− 1/M ≥ 1/M for n ≥ n0. In particular,
this means that 1/xn is meaningful for n ≥ n0. Now, for each natural number
k, there is an nk ≥ n0 such that |xn − x| ≤ 1/(k ·M2). It follows that

|(1/xn)− (1/x)| = |xn − x|
xn · x

≤ 1/k

This proves that the sequence (1/xn)n≥n0 converges to 1/x.

Some examples
Let us examine some examples where this concept of limits, which extends the
least upper bound and greatest lower bound, clarifies some properties of numbers.

Negative interest

In the study of compound interest we assumed that the rate of interest is
positive. This is a reasonable assumption for that application. However, there
are applications, like the calculation of the mass of rocket fuel, where it is
worth understanding what happens to the sequence ((1 + r/n)n)n≥1 for r < 0.
Equivalently, we can study the sequence ((1− r/n)n)n≥1 for r > 0.

If we apply the Binomial theorem to this as we did earlier we get the expression$(
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The signs alternate making it difficult to see whether this is increasing or
decreasing. On the other hand, we note that (for n ≥ 2)(
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In other words, we see that(
1− 1

n + 1

)n+1
= 1(

1 + 1
n

)n ·
1(

1 + 1
n

)
Since the sequence ((1 + 1/n)n)n≥1 is increasing and bounded it has a limit; call
it e. The sequence 1 + 1/n is decreasing at its greatest lower bound is 1. By the
arithmetic arguments made above we see that

lim
((

1− 1
n + 1

)n+1
)

n≥1

lim
(

1(
1 + 1

n

)n

)
n≥1

·lim
(

1(
1 + 1

n

))
n≥1

= 1
e
·11 = 1/e

Square roots

Given a number d > 1 (say 5) we picked a number f such that f2 > d (in our
example say 3). We then define a sequence x1 = 1 and

xn+1 = fxn + d

xn + f

We proved (by induction) that (xn)n 6=1 is an increasing and bounded sequence.
The claim that we did not prove is that, if x is the least upper bound, then
x2 = d. We can now prove this.

Since x is the least upper bound of the increasing sequence (xn)n≥1, we see that
x = lim(xn)n≥1. We then note, by the arithmetic properties proved above that

lim(xn+1)n≥1 = lim
(

fxn + d

xn + f

)
n≥1

= fx + d

x + f

For any sequence lim(xn+k)n≥1 = lim(xn)n≥1 since the first few terms clearly
do not matter! We thus obtain the identity

x = fx + d

x + f

This gives us x2 = d!
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