
Arithmetic and Least Upper Bound
In order to calculate with and use the least upper bound “construction” in our
number system, we need to work out its arithmetic properties.

Before going ahead, let us mention that, given a bounded (above) increasing
sequence (xn)n≥1, we see that (−xn)n≥1 is a bounded (below) decreasing se-
quence. Thus, all our assertions about properties of the least upper bound can
be easily transposed to properties of the greatest lower bound.

Simplest sequence
Given an increasing sequence x1, x2, x3, . . . of positive numbers, the sequence
1/x1, 1/x2, 1/x3, . . . is decreasing. Hence the sequence

1− 1
1 , 1− 1

2 , 1− 1
3 , . . .

is an increasing sequence bounded. Moreover, it is above by 1. How does one
prove that its least upper bound is one? This may seem obvious, but it always a
good idea to test our ability to prove things when we already know the answer!

We need to show that if x < 1, then x is not an upper bound of the above
sequence. In other words, we want to show that there is an n so that x < 1−1/n.
By simple arithmetic, this inequality is the same as

n >
1

1− x

Now, we see another use for the Archimedean principle! 1 − x is a positive
number, so 1/(1− x) is also a positive number. By the Archimedean principle,
there is a natural number n so that n = n · 1 > 1/(1− x).

Hence, we have proved that the least upper bound of the above sequence is 1.

Adding a constant
Given a bounded increasing sequence (xn)n≥1 with least upper bound x. We
easily guess that, for any number a, the sequence

a + x1, a + x2, a + x3, . . .

is a bounded increasing sequence with least upper bound a + x. How does one
prove this? First of all, since xn < xn+1 is given, we see that a + xn < a + xn+1,
since order is preserved under addition of the same number to both sides.
Similarly, xn ≤ x is given so a + xn < a + x means that this sequence is also
bounded above by a + x. It follows that the above sequence has a least upper
bound y and so a + x ≥ y. This means that a + xn ≤ y and so xn ≤ y − a. It
follows that y − a is an upper bound for xn. Since x is the least upper bound of
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(x + n)n≥1, it follows that y − a ≥ x. Combining the two statements y ≥ a + x
and a + x ≥ y we obtain y = a + x.

As a result of this argument, one can always “translate” a problem of studying
the least upper bound of a sequence and get a sequence of positive terms.

Multiplying a positive constant
Given a bounded increasing sequence (xn)n≥1 with least upper bound x. We
easily guess that, for any positive number a > 0, the sequence

a · x1, a · x2, a · x3, . . .

is a bounded increasing sequence with least upper bound a · x. How does one
prove this? First of all, since xn < xn+1 is given, we see that a · xn < a · xn+1,
since order is preserved under multiplication of both sides by the same positive
number. Similarly, xn ≤ x is given so a · xn < a · x means that this sequence
is also bounded above by a · x. It follows that the above sequence has a least
upper bound y and so a · x ≥ y. This means that a · xn ≤ y and so xn ≤ y/a. It
follows that y/a is an upper bound for xn. Since x is the least upper bound of
(x + n)n≥1, it follows that y/a ≥ x. Combining the two statements y ≥ a · x and
a · x ≥ y we obtain y = a · x.

(It is worth noting how the above argument merely involved changing addition
by multiplication and subtraction by division. Such a “mutation” of the proof
that proves something else is called mutatis mutandis.)

Adding two sequences
Given bounded increasing sequences (xn)n≥1 and (yn)n≥1 with least upper
bounds x and y, respectively. We easily guess that the sequence (xn + yn)n≥1
should have least upper bound x+y. As before, we easily show that (xn +yn)n≥1
is an increasing sequence and xn + yn ≤ x + yn ≤ x + y. So we need to show that
if z < x + y, then z is not an upper bound. In other words, that there is an n so
that xn + yn > z. Now, z − y < x, and x is the least upper bound of (xn), so
there is a p so that z− y < xp. Now, z− xp < y, and y is the least upper bound
of (yn), so there is a q so that z − xp < yq. So we get z < xp + yq, for some p
and q. Let r ≥ max{p, q}; then xp ≤ xr and yq ≤ yr, since both (xn) and (yn)
are increasing sequences. It follows that xp + yq ≤ xr + yr and so z < xr + yr.
Thus, we have shown that:

the sum of the least upper bound of two bounded increasing sequences
is the least upper bound of the term-wise sum of these sequences.

Multiplying two sequences
One has to be a little careful while comparing products since order is only
preserved under multiplication by positive numbers. Hence, we restrict ourselves
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to bounded increasing sequences (xn) and (yn) where 0 < x1 and 0 < y1; we
assume that x and y are the respective least upper bounds as before. We then
guess that x · y is the least upper bound of the product sequence (xn · yn). After
this the proof goes in a mutatis mutandis manner to the proof above.

First of all, we note that xn · yn ≤ x · yn ≤ x · y. So x · y is an upper bound for
the sequence (xn · yn).

For a number z < x · y we want to show that there is an element of the sequence
(xn ·yn) which is larger than z. Since y is positive, we also have (z/y) < x. Since
x is the least upper bound of (xn), there is a p such that (z/y) < xp. Now, xp

is also positive, so z < xp · y means that (z/xp) < y. Since y is the least upper
bound of (yn), there is a q such that (z/xp) < yq. It follows that z < xp · yq.
Now, take r ≥ max{p, q} and note that xp · yq ≤ xr · yr, since both sequences
are increasing. It follows that z < xr · yr and so z is not an upper bound for
(xn · yn). In summary,

the product of the least upper bound of two bounded increasing
sequences of positive terms is the least upper bound of the term-wise
product of these sequences.

Some more sequences
Given a sequence f(n) which dominates n, one notes that 1/n > 1/f(n) for
n ≥ n0. It follows that the greatest lower bound of (1/f(n))n≥n0 is less than
or equal to 0 which is the greatest lower bound of (1/n). On the other hand
f(n) > n is positive for n ≥ n0. So 0 is a lower bound for (1/f(n)). It follows
that 0 is equal to the greatest lower bound for (1/f(n))n≥n0 .

We apply this to f(n) = a0 + a1n + · · ·+ aknk where ak > 0. We can also apply
this to the case f(n) = (1 + x)n where x > 0.

Now, suppose that 0 < x < 1. It follows that 1/x > 1 and so y = (1/x)− 1 > 0.
We have x = 1/(1 + y). It follows that the sequence (xn) has greatest lower
bound 0. It follows that (xn+1/(1− x)) has greatest lower bound 0. We earlier
saw

1 + x + · · ·+ xn = 1− xn+1

1− x
= 1

1− x
− xn+1

1− x

Thus, we see that the sequence with general term 1 + x + · · ·+ xn has least upper
bound 1/(1− x). In other words, the sum of the series

∑∞
n=0 xn is 1/(1− x) by

the definition of such a sum as the least upper bound of the above sequence.
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