
Sequences and Series - I
As mentioned earlier, the notion of sequences is a bit outside usual arithmetic.
We have seen various ways to understand the growth of sequences which are
given by a “formula” for xn as a function of n. However, our original aim
was to understand bounded increasing sequences whereas, under the study of
growth, we looked at unbounded sequences. We now examine how this helps
us to understand the notion of more and more accurate measurements of one
number in terms of other numbers.

Measurement with a unit
Given a length a which is our “unit” of measurement, we want to measure a
length b.

Note that both a and b are lengths and thus positive.

By the Archimedean principle, we can find a natural number n so that n · a > b.
In fact, m · a > b for all m ≥ n. It follows that the collection of natural numbers
r so that r · a ≤ b is finite since r < n. Let r1 be the largest such r.

If r1 · a = b, then the length b is r1 in units of a. However, we expect that, in
general, there will be a “bit left over”. This is b1 = b− r1 · a which is positive
and b1 < a by choice of r1.

Again applying the Archimedean principle, there is an natural number n (not
the same n as the earlier paragraph!) so that n · b1 > a. Equivalently, we have
a/n < b1. Among r < n so that a/r ≤ b1 choose the smallest (we are again
choosing the smallest from a finite set) and call this r2.

Since b1 < a, we see that r2 ≥ 2. Moreover, we have a/(r2 − 1) > b1. Since
r2 ≥ 2 we see that r2 − 1 ≥ r2/2. It follows that 2a/r2 ≥ a/(r2 − 1) > b1. Now,
a/r2 ≤ b1, so a/r2 is a measurement of b1 in terms of a.

It follows (r1 + 1/r2) · a ≤ b is a “better” measurement of b in terms of a.

If b1 = a2, then we are done and b is measured as r1 + 1/r2 in terms of the unit
a.

Otherwise, we need to measure b2 = b1 − a/r2 > 0 in terms of a. It is now
convenient to replace a by a2 = a/r2. Since 2a/r2 > b1, it follows that 0 < b2 <
a2. The situation is similar to what we had with b1 and a above.

So we can repeat the above procedure to find r3 ≥ 2 so that a2/r3 ≤ b2 and
a2/(r3 − 1) > b2. Doing the arithmetic, we see that(

r1 + 1
r2

+ 1
r2 · r3

)
· a ≤ b

Gives the next better measurement of b in terms of a with possible error b3 =
b2 − a2/r3. We have 0 ≤ b3 < a3 where a3 = a2/r3. So, we can continue this
procedure.
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We see that the sequence

r1,

(
r1 + 1

r2

)
,

(
r1 + 1

r2
+ 1
r2 · r3

)
, . . .

bounded by b/a. It is clearly increasing, and so it has a least upper bound. In
fact, this least upper bound is b/a almost by construction.

The above procedure is what is usually followed in order to steadily improve
our measurement process. Mathematically, it allows us to express any positive
number (here b/a) as the least upper bound of a sequence of the form

r1,

(
r1 + 1

r2

)
,

(
r1 + 1

r2
+ 1
r2 · r3

)
, . . .

The general term of this sequence takes the form

r1 + 1
r2

+ 1
r2 · r3

+ · · ·+ 1
r2 · r3 · · · rk

where ri ≥ 2 for i ≥ 2. (Note that r1 could even be 0.)

Representation of some numbers
The above example leads us to consider, given a sequence of positive integers,

r2, r3, . . . all ≥ 2,

the resulting sequence of fractions

1
r2
,

1
r2

+ 1
r2 · r3

,
1
r2

+ 1
r2 · r3

+ 1
r2 · r3 · r4

, . . .

Clearly, this is an increasing sequence. Is it bounded? We note that the terms
of this sequence are less than the terms of the sequence

1
2 ,

1
2 + 1

2 · 2 ,
1
2 + 1

2 · 2 + 1
2 · 2 · 2 , . . .

The general term of the latter sequence is

1
2 + 1

2 · 2 + · · ·+ 1
2k

We note that, for any number x, we have

(1− x) · (x+ x2 + · · ·+ xk)
= (x+ x2 + · · ·+ xk)− (x2 + x3 + · · ·+ xk+1)

= x− xk+1
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In our case, by substituting x = 1/2 we get the identity(
1− 1

2

)
·
(

1
2 + 1

2 · 2 + · · ·+ 1
2k

)
= 1

2 −
1

2k+1 <
1
2

It follows that
1
2 + 1

2 · 2 + · · ·+ 1
2k

< 1

Hence, the above sequence of fractions

1
r2
,

1
r2

+ 1
r2 · r3

,
1
r2

+ 1
r2 · r3

+ 1
r2 · r3 · r4

, . . .

is an increasing sequence of fractions bounded by 1. Hence, it has a least upper
bound α which is at most 1. Conversely, we can use the previous section to show
that any positive number α ≤ 1 either has a finite expression of the form

1
r2

+ 1
r2 · r3

+ · · ·+ 1
r2 · r3 · · · rn

or is the least upper bound of a sequence of the form

1
r2
,

1
r2

+ 1
r2 · r3

,
1
r2

+ 1
r2 · r3

+ 1
r2 · r3 · r4

, . . .

where all the ri satisfy ri ≥ 2.

Series - I
Given numbers x1, x2, . . . , xn, the sum x1 + x2 + · · ·+ xn is well-defined due to
the associative law of addition. Even though some of you have learned to write
infinite sums as x1 + x2 + · · ·, it is not immediately clear how this is defined!
For example, we may be tempted to write the above expression for α as

α = 1
r2

+ 1
r2 · r3

+ 1
r2 · r3 · r4

+ · · ·

Using the
∑

for summations and
∏

for products, this can be written even more
concisely as

α =
∞∑

n=2

1∏n
i=2 ri

However, there is a hidden ambiguity in the ∞ symbol that appears above the∑
symbol.

Taking a cue from the above example, let us first limit ourselves to the case
when xi are all positive (or at least non-negative). In that case, the series

x1, x1 + x2, x1 + x2 + x3, . . .
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is an increasing sequence. If it is bounded, then we can define the infinite sum
to be the least upper bound of this sequence. In that case, we say that the series∑∞

i=1 xi is convergent. On the other hand, if this sequence is not bounded, we
say that this series is divergent, or more precisely, that it diverges to infinity.
The term series is used for an infinite sum to distinguish from finite sums and
from infinite sequences.

It is worth underlining that if a series diverges to infinity, it means that given
any number M , there is a natural number n(M) so that x1 + x2 + · · ·+ xn > M
for all n ≥ n(M). As we shall see, this need not mean that xn are themselves
large.

Geometric Series - I

In the process of making the argument in the previous section, we used the
identity

(1− x) · (x+ x2 + · · ·+ xn) = x− xn+1

A similar argument (or just adding (1−x) to both sides!) gives the more common
identity

(1− x) · (1 + x+ · · ·+ xn) = 1− xn+1

When x 6= 1 we can divide both sides by (1− x) to get

1 + x+ · · ·+ xn = 1− xn+1

1− x

Now, if 0 < x < 1, then 0 < 1− x < 1. It follows that

1 + x+ · · ·+ xn = 1− xn+1

1− x = 1
1− x −

xn+1

1− x <
1

1− x

Hence, the sequence
1, 1 + x, 1 + x+ x2, . . .

has 1/(1 − x) as an upper bound. Moreover, since x > 0, it is an increasing
sequence, so it has a least upper bound. We shall shortly show that this least
upper bound is 1/(1− x). For the time being it is enough to note:

For a number x such that 0 < x < 1, the sequence with general term
1 + x+ · · ·+ xn is bounded by 1/(1− x) for all n.

Harmonic Series - I
We now examine the series

∑∞
n=1 1/n. Equivalently, we are looking at the

sequence of fractions
1, 1 + 1

2 , 1 + 1
2 + 1

3 , . . .

with general term 1 + (1/2) + · · ·+ (1/n).
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We note that 1/3 > 1/4, so

1
3 + 1

4 >
1
4 + 1

4 = 1
2

Similarly, 1/5, 1/6 and 1/7 are greater than 1/8, so

1
5 + 1

6 + 1
7 + 1

8 >
1
8 + 1

8 + 1
8 + 1

8 = 1
2

Proceeding similarly, (using induction as appropriate!)

2k∑
i=1

1
2k + i

= 1
2k + 1 + 1

2k + 2 + · · ·+ 1
2k+1

>

2k times︷ ︸︸ ︷
1

2k+1 + 1
2k+1 + · · ·+ 1

2k+1 = 2k · 1
2k+1 = 1

2

It follows that

1 + 1
2 + 1

3 + · · ·+ 1
2k+1

= 1 + 1
2 +

2∑
i=1

1
2 + i

+ · · ·+
2k∑

i=1

1
2k + i

> 1+

k + 1 times︷ ︸︸ ︷
1
2 + · · ·+ 1

2= 1 + k + 1
2

Thus, this series
∑∞

n=1(1/n), whose terms are steadily decreasing, nevertheless
diverges to infinity!

Square Harmonic series
Since the series with general term n2 dominates the series with general term n,
we see that 1/n2 goes to 0 more rapidly than 1/n. So, one may imagine that
the series

∑∞
i=1 1/n2 could be convergent. As we shall see now, this is indeed

the case.

We note that 1/32 < 1/22 so

1
22 + 1

32 <
1
22 + 1

22 = 2 1
22 = 1

2

Similarly,

1
42 + 1

52 + 1
62 + 1

72 <
1
42 + 1

42 + 1
42 + 1

42 = 4 1
42 = 1

4
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More generally,

2k−1∑
i=0

1
(2k + i)2 = 1

22k
+ 1

(2k + 1)2 + · · ·+ 1
(2k+1 − 1)2

<

2k times︷ ︸︸ ︷
1

22k
+ 1

22k
+ · · ·+ 1

22k
= 2k · 1

22k
= 1

2k

It follows that

1 + 1
22 + 1

32 + · · ·+ 1
(2k+1 − 1)2

= 1 +
1∑

i=0

1
(2 + i)2 + · · ·+

2k−1∑
i=0

1
(2k + i)2

< 1 + 1
2 + · · ·+ 1

2k

We have seen above that the last sum is bounded by 1/(1− (1/2)) = 2. It follows
that the sum

1 + 1
22 + 1

32 + · · ·+ 1
n2

is bounded by 2 for all n. Hence, the series
∑∞

n=1(1/n2) converges to a number
not bigger than 2. What is this number? It takes some effort to find out!

Zeta function

Since 1/nk < 1/n2 for k ≥ 2, we can use the above argument to conclude that
the series

ζ(k) = 1 + 1
2k

+ 1
3k

+ · · · =
∞∑

n=1

1
nk

converges for all k ≥ 2. Euler studied these series and found nice formulas for
the values when k is even. However, not much is known about the values when
k is odd!

More generally, given any sequence (an)n≥1 we can study it by studying the
Dirichlet series

L((an), k) =
∞∑

n=1

an

nk

If the (an) is dominated by polynomial of order p in n, then this converges for
k ≥ p+ 2.
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Some Sequences
Square roots

Given a fraction p/q such that p2/q2 < 5, we note that r/s = 5q/p is a fraction
such that r2/s2 > 5. So we can form a “combination” (3p+ 5q)/(p+ 3q) which
lies between p/q and r/s. We note that

(3p+ 5q)2 − 5(p+ 3q)2

= (9p2 + 30pq + 25q2)− (5p2 + 30pq + 45q2)
= 4p2 − 20q2 = 4(p2 − 5q2) < 0

Thus (3p + 5q)2/(p + 3q)2 < 5. Applying this “process” to 2/1 we get the
sequence

2
1 ,

11
5 ,

29
13 , . . .

This is a bounded sequence of fractions a/b such that a2/b2 < 5. It follows easily
that a/b < 3 for all these fractions. In fact, we will show that the least upper
bound of a2/b2 is 5. Consequently, we will see that the least upper bound of the
above sequence is a (positive) number x such that x2 = 5.

More generally, if N is any natural number which is not a square, let k and l be
natural numbers such that k2 < N and N < l2. We take a sequence of rational
numbers xn which starts with x1 = k and is defined iteratively by the formula

xn+1 = lxn +N

xn + l

We note that x2
1 = k2 < N < l2. Given that x2

n < N < l2, we calculate

(lxn +N)2 −N(xn + l)2

= (l2x2
n + 2lNxn +N2)−N · (x2

n + 2lxn + l2)
=
((
l2 −N

)
x2

n −N ·
(
l2 −N

))
= (l2 −N) · (x2

n −N) < 0

It follows that x2
n+1 < N < l2. This shows by induction that xn+1 is bounded

and x2
n+1 is bounded by N . It follows that xn(x+ n+ l) = x2

n + lxn < lxn +N .
Hence xn < xn+1. So,

x1, x2, x3, . . .

is a bounded increasing sequence. Thus, it has a least upper bound x. We will
show that x2 = N . This method allows us to “construct” square roots of all
fractions.
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Compounded Interest

On a principal loan amount of P , if a rate of interest r is charged, and interest
is “compounded” n times a year, then the total amount to be paid back at the
end is

P
(

1 + r

n

)n

This is because, you need to pay interest on the accumulated interest as well!
If another bank charges interest m times a year, and m > n, you may imagine
(and we will prove!) that

P
(

1 + r

m

)m

> P
(

1 + r

n

)n

if m > n

As m increases, you are paying more and more! Is there an upper bound to
the amount you would have to pay? In other words, we are asking whether the
sequence

1 + r,
(

1 + r

2

)2
,
(

1 + r

3

)3
, . . .

has a least upper bound. We will assume that r > 0 since it would be a funny
bank which would charge a negative rate of interest!

The Binomial theorem tells us that(
1 + r

n

)n

= 1 +
(
n

1

)
r

n
+
(
n

2

)
r2

n2 + · · ·
(
n

n

)
rn

nn

We now use the expression (where k! = 1 · 2 · · · k)(
n

k

)
= n(n− 1) · · · (n− k + 1)

k!

to estimate the general term in the right-hand side. First of all, we note(
n

k

)
rk

nk
= rk · n(n− 1) · · · (n− k + 1)

nk · k! = rk

k! ·
(

1 ·
(

1− 1
n

)
· · ·
(

1− k − 1
n

))
If m > n, then for any natural number a, we have a/n > a/m and so (1−a/n) <
(1− a/m). So we see that(

n

k

)
rk

nk
= rk

k! ·
(

1 ·
(

1− 1
n

)
· · ·
(

1− k − 1
n

))
<
rk

k! ·
(

1 ·
(

1− 1
m

)
· · ·
(

1− k − 1
m

))
=
(
m

k

)
rk

mk

This shows that the sequence above is increasing. Next, we see that(
n

k

)
rk

nk
= rk

k! ·
(

1 ·
(

1− 1
n

)
· · ·
(

1− k − 1
n

))
≤ rk

k!
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It follows that (
1 + r

n

)n

≤
n∑

k=0

rk

k!

At first sight this does not seem to help since we have replaced one complicated
expression with another! However, have some faith!

By the Archimedean principle, we know that there is a natural number n0 so
that n0 > 2r. It follows that for k ≥ n0

rk

k! = rn0

(n0)! ·
(

r

n0 + 1 ·
r

n0 + 2 · · ·
r

k

)
≤ rn0

(n0)! ·
1

2k−n0

Adding all these up, we see that for n ≥ n0(
1 + r

n

)n

≤
n0−1∑
k=0

rk

k! + rn0

(n0)!

n−n0∑
k=0

1
2k−n0

As seen in the study of the geometric series, the last term on the right-hand side
is bounded.

n0−1∑
k=0

rk

k! + rn0

(n0)!

n−n0∑
k=0

1
2k−n0

<

n0−1∑
k=0

rk

k! + rn0

(n0)! · 2

Since r and n0 are fixed. This gives an upper bound for our sequence.

In conclusion, (with a lot of work!) we have shown that (1 + r/n)n is a bounded
increasing sequence. We will see later that it has a very interesting limit.

At least, as a result of all this work, we can put an upper bound on the amount
of interest that the bank can charge us. This should be a relief too!
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