## Solutions to Assignment 2

1. Compare the following sequences to decide which one is eventually larger.
(1 mark)
(a) The sequence with general term $10^{15}$

$$
10^{15}, 10^{15}, 10^{15}, \ldots
$$

versus the sequence with general term $\frac{n}{10^{15}}$

$$
\frac{1}{10^{15}}, \frac{2}{10^{15}}, \frac{3}{10^{15}}, \ldots
$$

Solution: For $n>10^{30}$ we have $\frac{n}{10^{15}}>10^{15}$.
(1 mark)
(1 mark)
(c) The sequence with general term $(n+1000) \cdot 10^{10}$

$$
(1001) \cdot 10^{10},(1002) \cdot 10^{10},(1003) \cdot 10^{10}, \ldots
$$

versus the sequence with general term $n^{2} / 10^{15}$

$$
\frac{1^{2}}{10^{15}}, \frac{2^{2}}{10^{15}}, \frac{3^{2}}{10^{15}}, \ldots
$$

Solution: For $n>10^{28}$ we have $\frac{n^{2}}{10^{15}}>n \cdot 10^{13}$. For $n>1$ we have $n \cdot 10^{3}>$ $(n+1000)$, hence $n \cdot 10^{13}>(n+1000) \cdot 10^{10}$.
(1 mark)
(d) The sequence with general term $n \cdot 10^{10}$

$$
1 \cdot 10^{10}, 2 \cdot 10^{10}, 3 \cdot 10^{10}, \ldots
$$

versus the sequence with general term $\left(n^{2}-n\right) / 10^{15}$

$$
0=\frac{0}{10^{15}}, \frac{2}{10^{15}}, \frac{6}{10^{15}}, \ldots
$$

Solution: For $n>10^{25}+1$, we have $n^{2}>\left(10^{25}+1\right) \cdot n$, and so, $\left(n^{2}-n\right)>n \cdot 10^{25}$. It follows that $\left(n^{2}-n\right) / 10^{15}>n \cdot 10^{10}$ for such $n$.
(1 (bonus))
(1 mark)
(1 mark)
(1 mark)
(e) The sequence with general term $2^{n}$

$$
2^{1}, 2^{2}, 2^{3}, \ldots
$$

versus the Fibonacci sequence with general term $F(n)=F(n-1)+F(n-2)$ starting with $F(1)=5$ and $F(2)=8$.

$$
5,8,13, \ldots
$$

2. Give the properties of each sequence out of:
eventually increasing, eventually decreasing, neither, bounded, unbounded
(b) The sequence with general term $5(n+1)^{2} /\left(n^{3}+2 n\right)$

$$
20 / 3,45 / 12,80 / 33, \ldots
$$

Solution: To compare successive terms of this sequence we write

$$
\begin{aligned}
& 5(n+1)^{2}\left((n+1)^{3}+2(n+1)\right)-5((n+1)+1)^{2}\left(n^{3}+2 n\right) \\
& =5\left(\left(n^{2}+2 n+1\right)\left(n^{3}+3 n^{2}+5 n+3\right)-\left(n^{2}+4 n+4\right)\left(n^{3}+2 n\right)\right) \\
& =5\left(\left(n^{5}+5 n^{4}+12 n^{3}+16 n^{2}+11 n+3\right)-\left(n^{5}+4 n^{4}+6 n^{3}+8 n^{2}+8 n\right)\right) \\
& =5\left(n^{3}+3 n^{2}+5 n+3\right)
\end{aligned}
$$

This number is positive for all positive values of $n$. Hence, the sequence is decreasing. It follows that $10 / 3$ is an upper bound! It is also clear that all the fractions are positive, so 0 is a lower bound.
Solution: We see that $n /(n+1)=1-1 /(n+1)$. Since $1 /(n+1)$ decreases with increasing $n$, the given sequence is increasing. Moreover, we see that 1 is an upper bound. Since all the fractions are positive 0 is a lower bound.

Solution: To

$$
\text { ractions are posinve, so } 0 \text { is a lower pounu. }
$$

(c) The sequence with general term $n^{100} / 2^{n}$

$$
1 / 2,2^{98}, 3^{100} / 8, \ldots
$$

Solution: To compare successive terms of this sequence we write

$$
\frac{n^{100} 2^{n+1}}{(n+1)^{100} 2^{n}}=2\left(1-\frac{1}{n+1}\right)^{100}
$$

Now, $(1-1 /(n+1))^{100}>1 / 2$ for $n>200$, so this fraction is greater than 1 . It follows that the sequence is eventually decreasing. Moreover, it is bounded above the maximum of the first 200 terms! Since all the fractions are positive, so 0 is a lower bound.
(1 mark)
(d) The sequence with general term $2^{2 n-1} /\left(10^{n}\right)$

$$
2 / 10,8 / 100,32 / 1000, \ldots
$$

Solution: To compare successive terms of this sequence we write

$$
\frac{2^{2 n-1} 10^{n+1}}{2^{2 n+1} 10^{n}}=\frac{10}{4}>1
$$

It follows that the sequence is decreasing. Since $10 / 4>2$ it follows that the terms of the sequence are less than $(2 / 10) / 2^{n-1}$. Since this sequence is bounded above by $(2 / 10)$, our original sequence is also bounded above by $2 / 10$.
(1 (bonus))
(e) The sequence with general term $n \cdot \sin (1 / n)$

$$
\sin (1), 2 \sin (1 / 2), 3 \sin (1 / 3), \ldots
$$

3. Which of the following sequences has an upper bound and which does not.
(1 mark) (a) The sequence with general term $n^{2}-100 \cdot n$.
Solution: We note that $n^{2}-100 \cdot n>n$ for $n>101$. It follows that the sequence is not bounded above.
(1 mark) (b) The sequence with general term $1000 \cdot n^{2}-2^{n}$.
Solution: We note that $2^{10}=1024>1000$. Now, $2^{n-10}>n^{2}$ if $n=20$. Moreover,

$$
\frac{2^{(n+1)-10}}{2^{n-10}}=2>\frac{n+1^{2}}{n}
$$

For $n>3$. It follows that $2^{n-10}>n^{2}$ for all $n>20$. Thus the terms of the sequence are negative for $n>20$. The maximum of the first 20 terms is therefore an upper bound.
(1 (bonus)) (c) The sequence with general term $1+1 / 2+\cdots+1 / n$ ! where $n$ ! $=1 \cdot 2 \cdots n$ is the factorial of $n$.

