Analysis in One Variable

Sequences

Justify all your answers.

1. Compare the following sequences to decide which one is eventually larger.
(1 mark) (a) The sequence with general term 10^{15}

$$
10^{15}, 10^{15}, 10^{15}, \ldots
$$

versus the sequence with general term $\frac{n}{10^{15}}$

$$
\frac{1}{10^{15}}, \frac{2}{10^{15}}, \frac{3}{10^{15}}, \ldots
$$

(1 mark)
(b) The sequence with general term $n \cdot 10^{10}$

$$
1 \cdot 10^{10}, 2 \cdot 10^{10}, 3 \cdot 10^{10}, \ldots
$$

versus the sequence with general term $n^{2} / 10^{15}$

$$
\frac{1^{2}}{10^{15}}, \frac{2^{2}}{10^{15}}, \frac{3^{2}}{10^{15}}, \ldots
$$

(1 mark) (c) The sequence with general term $(n+1000) \cdot 10^{10}$

$$
(1001) \cdot 10^{10},(1002) \cdot 10^{10},(1003) \cdot 10^{10}, \ldots
$$

versus the sequence with general term $n^{2} / 10^{15}$

$$
\frac{1^{2}}{10^{15}}, \frac{2^{2}}{10^{15}}, \frac{3^{2}}{10^{15}}, \ldots
$$

(1 mark) (d) The sequence with general term $n \cdot 10^{10}$

$$
1 \cdot 10^{10}, 2 \cdot 10^{10}, 3 \cdot 10^{10}, \ldots
$$

versus the sequence with general term $\left(n^{2}-n\right) / 10^{15}$

$$
0=\frac{0}{10^{15}}, \frac{2}{10^{15}}, \frac{6}{10^{15}}, \ldots
$$

(1 (bonus)) (e) The sequence with general term 2^{n}

$$
2^{1}, 2^{2}, 2^{3}, \ldots
$$

versus the Fibonacci sequence with general term $F(n)=F(n-1)+F(n-2)$ starting with $F(1)=5$ and $F(2)=8$.

$$
5,8,13, \ldots
$$

2. Give the properties of each sequence out of:
eventually increasing, eventually decreasing, neither, bounded, unbounded
(1 mark) (a) The sequence with general term $n /(n+1)$.

$$
1 / 2,2 / 3,3 / 4, \ldots
$$

(1 mark) (b) The sequence with general term $5(n+1)^{2} /\left(n^{3}+2 n\right)$

$$
20 / 3,45 / 12,80 / 33, \ldots
$$

(1 mark)
(c) The sequence with general term $n^{100} / 2^{n}$

$$
1 / 2,2^{98}, 3^{100} / 8, \ldots
$$

(1 mark)
(d) The sequence with general term $2^{2 n-1} /\left(10^{n}\right)$

$$
2 / 10,8 / 100,32 / 1000, \ldots
$$

(1 (bonus))
(e) The sequence with general term $n \cdot \sin (1 / n)$

$$
\sin (1), 2 \sin (1 / 2), 3 \sin (1 / 3), \ldots
$$

3. Which of the following sequences has an upper bound and which does not.
(a) The sequence with general term $n^{2}-100 \cdot n$.
(1 mark)
(b) The sequence with general term $1000 \cdot n^{2}-2^{n}$.
(1 (bonus))
(c) The sequence with general term $1+1 / 2+\cdots+1 / n$! where n ! $=1 \cdot 2 \cdots n$ is the factorial of n.
