Solutions to Assignment 1

1. In each pair of numbers below, which is larger? Explain why.
(1 mark)
(a) $10 / 81,11 / 90$

Solution: We have $81 \cdot 11=891$ which is less than $10 \cdot 90=900$. So $10 / 81>$ 11/90.
(1 mark)
(b) $100 / 811,111 / 900$

Solution: We have $811 \cdot 111=90021$ which is greater than $100 \cdot 900=90000$. So 100/811<111/900.
2. In each pair of numbers below, which is larger? Explain why.
(1 mark)
(a) $(10)^{5}, 10000 \cdot(11)^{2}$

Solution: The first number has 6 digits, while the second one has 7 digits (since $\left.(11)^{2}=121\right)$. So the second one is larger.
(1 mark)
(1 (bonus))
(c) $n^{5}, 10000 \cdot(n+1)^{2}$ for large n.
3. Give two positive rational numbers p / q and r / s (this means that p, q, r and s are natural, or counting, numbers). Suppose that $p / q<r / s$, which of the following numbers lies in between?
(1 mark)
(a) $\frac{(p / q)+(r / s)}{2}$

Solution: Note that

$$
(r / s)-\frac{(p / q)+(r / s)}{2}=\frac{(r / s)-(p / q)}{2}>0
$$

This shows that $(r / s)>\frac{(p / q)+(r / s)}{2}$. The other inequality is similar.
(1 mark)
(b) $(100)^{5}, 10000 \cdot(101)^{2}$

Solution: The first number has 11 digits, while the second one has 9 digits (since $\left.(101)^{2}=10201\right)$. So the first one is larger.
(b) $\sqrt{(p r) /(q s)}$

Solution: Note that

$$
\frac{(r / s)}{\sqrt{(p r) /(q s)}}=\frac{\sqrt{r / s}}{\sqrt{p / q}}>1
$$

This shows that $(r / s)>\sqrt{(p r) /(q s)}$. The other inequality is similar.
(1 mark) (c) $(p+r) /(q+s)$
Solution: We are given that $p / q<r / s$. This means $p s<q r$ (since all numbers a positive). Now

$$
r(q+s)=r q+r s>p s+r s=s(p+r)
$$

It follows that $r / s>(p+r) /(q+s)$. The other inequality is similar.
(1 (bonus)) (d) Order the above three numbers.
4. Given that p and q are counting numbers so that $p^{2}>3 q^{2}$ and put $r / s=(2 p+3 q) /(p+$ $2 q$). Show that:
(1 mark)
(1 mark)
(1 (bonus))
(b) $r / s<p / q$

Solution: We note that $p / q=(2 p) /(2 q)$. Moreover, given that $p^{2}>3 q^{2}$, we have $p / q>(3 q) / p$. So we can use the last part of the previous question to get $p / q>(2 p+3 q) /(2 q+p)$. It can also be checked by multiplying it out.
Thus, the difference $r^{2}-3 s^{2}$ is $p^{2}-3 q^{2}$ which is given to be positive.
(1)
(c) Use this idea to find a rational number a / b so that $100\left(a^{2}-3 b^{2}\right)<b^{2}$.

