Inequalities

Justify all your answers.

1. In each pair of numbers below, which is larger? Explain why.
(1 mark)
(1 mark)
(a) $10 / 81,11 / 90$
(b) $100 / 811,111 / 900$
2. In each pair of numbers below, which is larger? Explain why.
(1 mark)
(a) $(10)^{5}, 10000 \cdot(11)^{2}$
(1 mark)
(b) $(100)^{5}, 10000 \cdot(101)^{2}$
(c) $n^{5}, 10000 \cdot(n+1)^{2}$ for large n.
3. Give two positive rational numbers p / q and r / s (this means that p, q, r and s are natural, or counting, numbers). Suppose that $p / q<r / s$, which of the following numbers lies in between? (Hint: If you can't do it right away, try putting values for the variables to help you.)
(1 mark)
(1 mark)
(a) $\frac{(p / q)+(r / s)}{2}$
(b) $\sqrt{(p r) /(q s)}$
(1 mark)
(c) $(p+r) /(q+s)$
(1 (bonus))
(d) Order the above three numbers.
4. Given that p and q are counting numbers so that $p^{2}>3 q^{2}$ and put $r / s=(2 p+3 q) /(p+$ $2 q)$. Show that:
(1 mark)
(a) $r^{2}>3 s^{2}$
(1 mark)
(b) $r / s<p / q$
(1 (bonus))
(c) Use this idea to find a rational number a / b so that $100\left(a^{2}-3 b^{2}\right)<b^{2}$.
(Hint: If you can't do it right away, try putting values for the variables to help you.)
