Solutions to Quiz 7

(5 marks) 1. Solve the Dirichlet problem in the unit disk:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

for $x^{2}+y^{2} \leq 1$ under the conditions

$$
u(x, y)=x+y^{2} \text { for } x^{2}+y^{2}=1
$$

Solution: We convert to polar co-ordinates (r, θ) (1 Mark). The problem is then restated as:

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

with the boundary condition

$$
u(1, \theta)=\cos \theta+\sin ^{2} \theta
$$

Wrting this as a Fourier Series (2 Marks) we have

$$
u(1, \theta)=\frac{1}{2}+\cos \theta-\frac{\cos (2 \theta)}{2}
$$

It follows that the solution is (1 Mark)

$$
u(r, \theta)=\frac{1}{2}+r \cos \theta-r^{2} \frac{\cos (2 \theta)}{2}
$$

Converting this in terms of x and y, we get (1 Mark)

$$
u(x, y)=\frac{1}{2}+x-\frac{x^{2}-y^{2}}{2}
$$

