Solutions to Assignment 8

1. Solve the classical 1-dimensional wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

for $x \in[0, \pi]$ under the conditions

$$
u(0, t)=u(\pi, t)=0 \text { and } u(x, 0)=f(x) \text { and } \frac{\partial u}{\partial t}(x, 0)=0
$$

where f is the function given below. (In this question and subsequent questions you can make use of the Fourier series calculated in other assignments.)

$$
f(x)= \begin{cases}x & 0 \leq x \leq \pi / 2 \\ \pi-x & \pi / 2 \leq x \leq \pi\end{cases}
$$

Solution: By the method of separation of variables we write the solution in the form $u(x, t)=\sum_{n} F_{n}(t) G_{n}(x)$ where F_{n} and G_{n} satisfy the equations

$$
\frac{d^{2} G_{n}(x)}{d x^{2}}+n^{2} G_{n}(x)=0 \text { and } G_{n}(0)=G_{n}(\pi)=0
$$

and

$$
\frac{d^{2} F_{n}(t)}{d t^{2}}+n^{2} a^{2} F_{n}(t)=0 \text { and } \frac{d F_{n}(t)}{d t}(0)=0
$$

These have the solutions

$$
G_{n}(x)=\sin (n x) \text { and } F_{n}(t)=a_{n} \cos (n a t)
$$

So the solution has the form

$$
u(t, x)=\sum_{n=1}^{\infty} a_{n} \cos (n a t) \sin (n x)
$$

The given condition says that

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin (n x)
$$

It follows that

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x
$$

Given the symmetry $x \mapsto \pi-x$ of the function f and the $(-1)^{n+1}$-symmetry of $\sin (n x)$ for this map, we get $a_{n}=0$ for $n=2 k$ and for $n=2 k+1$,

$$
a_{n}=\frac{4}{\pi} \int_{0}^{\pi / 2} x \sin ((2 k+1) x)
$$

Using integration by parts we get

$$
a_{n}=\left.\frac{4}{\pi}\left(-x \frac{\cos ((2 k+1) x)}{2 k+1}+\frac{\sin ((2 k+1) x)}{(2 k+1)^{2}}\right)\right|_{x=0} ^{\pi / 2}
$$

This gives us

$$
a_{n}=\frac{4 \cdot(-1)^{k}}{\pi \cdot(2 k+1)^{2}}
$$

Thus the complete solution is

$$
u(x, t)=\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}} \cos ((2 k+1) a t) \sin ((2 k+1) x)
$$

We note that the series is absolutely convergent for all x and t. Hence, this "formal" solution is an actual solution.
2. Solve the classical 1-dimensional heat equation

$$
\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

for $x \in[0, \pi]$ and $t \geq 0$ under the conditions

$$
u(0, t)=u(\pi, t)=0 \text { and } u(x, 0)=|\sin (2 x)|
$$

Solution: By the method of separation of variables we write the solution in the form $u(x, t)=\sum_{n} F_{n}(t) G_{n}(x)$ where F_{n} and G_{n} satisfy the equations

$$
\frac{d^{2} G_{n}(x)}{d x^{2}}+n^{2} G_{n}(x)=0 \text { and } G_{n}(0)=G_{n}(\pi)=0
$$

and

$$
\frac{d F_{n}(t)}{d t}+a^{2} n^{2} F_{n}(t)=0
$$

These have the solutions

$$
G_{n}(x)=\sin (n x) \text { and } F_{n}(t)=a_{n} \exp \left(-a^{2} n^{2} t\right)
$$

So the solution has the form

$$
u(t, x)=\sum_{n=1}^{\infty} a_{n} \exp \left(-a^{2} n^{2} t\right) \sin (n x)
$$

The given condition says that

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin (n x)
$$

It follows that

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x
$$

Given the symmetry $x \mapsto \pi-x$ of the function f and the $(-1)^{n+1}$-symmetry of $\sin (n x)$ for this map, we get $a_{n}=0$ for $n=2 k$ and for $n=2 k+1$,

$$
a_{n}=\frac{4}{\pi} \int_{0}^{\pi / 2} \sin (2 x) \sin ((2 k+1) x)
$$

We have the identity

$$
\sin (2 x) \sin ((2 k+1) x)=\frac{\cos ((2 k-1) x)-\cos ((2 k+3) x)}{2}
$$

This gives us

$$
a_{n}=\left.\frac{2}{\pi}\left(\frac{\sin ((2 k-1) x)}{2 k-1}-\frac{\sin ((2 k+3) x)}{2 k+3}\right)\right|_{x=0} ^{\pi / 2}
$$

which simplifies to

$$
a_{n}=\frac{8 \cdot(-1)^{k+1}}{\pi \cdot(2 k-1) \cdot(2 k+3)}
$$

Thus the complete solution is

$$
u(x, t)=\frac{8}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k-1) \cdot(2 k+3)} \exp \left(-(2 k+1)^{2} a^{2} t\right) \sin ((2 k+1) x)
$$

We note that the series is absolutely convergent for all x and $t \geq 0$. Hence, this "formal" solution is an actual solution.
3. Solve the classical 2-dimensional Laplace equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

for $x^{2}+y^{2} \leq 1$ under the conditions

$$
u(x, y)=x^{2} \text { for } x^{2}+y^{2}=1
$$

Solution: We convert to polar co-ordinates (r, θ). The problem is then restated as:

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

with the boundary condition

$$
u(1, \theta)=\cos ^{2} \theta
$$

By the method of separation of variables we write the solution in the form $u(r, \theta)=$ $\sum_{n} F_{n}(r) G_{n}(\theta)$ where F_{n} and G_{n} satisfy the equations

$$
\frac{d^{2} G_{n}(\theta)}{d x^{2}}+n^{2} G_{n}(\theta)=0
$$

and

$$
\frac{d^{2} F_{n}}{d r^{2}}+\frac{1}{r} \frac{d F_{n}}{d r}+\frac{n^{2}}{r^{2}} F_{n}=0
$$

This gives $G_{n}(\theta)=a_{n} \cos (n \theta)+b_{n} \sin (n \theta)$ and

$$
F_{n}(r)= \begin{cases}A+B \log (r) & n=0 \\ A r^{n}+B r^{-n} & n>0\end{cases}
$$

Since $u(r, \theta)$ is finite for $r=0$ it follows that we can take $F_{n}(r)=r^{n}$ for all n. In other words, the solution is

$$
u(r, \theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} r^{n}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right)
$$

for constants a_{n}, b_{n} such that

$$
u(1, \theta)=\cos ^{2} \theta=\frac{\cos (2 \theta)-1}{2}
$$

We see easily that this means $a_{n}=0$ for $n \neq 0,2$ and $a_{2}=-a_{0}=1 / 2$; also, $b_{n}=0$ for all n. In other words, the solution is

$$
u(x, y)=\frac{x^{2}-y^{2}+1}{2} \text { for } x^{2}+y^{2} \leq 1
$$

