Partial Differential Equations

1. Solve the classical 1-dimensional wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

for $x \in[0, \pi]$ under the conditions

$$
u(0, t)=u(\pi, t)=0 \text { and } u(x, 0)=f(x) \text { and } \frac{\partial u}{\partial t}(x, 0)=0
$$

where f is the function given below. (In this question and subsequent questions you can make use of the Fourier series calculated in other assignments.)

$$
f(x)= \begin{cases}x & 0 \leq x \leq \pi / 2 \\ \pi-x & \pi / 2 \leq x \leq \pi\end{cases}
$$

2. Solve the classical 1-dimensional heat equation

$$
\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

for $x \in[0, \pi]$ and $t \geq 0$ under the conditions

$$
u(0, t)=u(\pi, t)=0 \text { and } u(x, 0)=|\sin (2 x)|
$$

3. Solve the classical 2-dimensional Laplace equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

for $x^{2}+y^{2} \leq 1$ under the conditions

$$
u(x, y)=x^{2} \text { for } x^{2}+y^{2}=1
$$

