Solutions to Quiz 6

1. Find the Fourier series for the following function:

$$
f(x)= \begin{cases}x & 0 \leq x \leq \pi \\ 0 & -\pi \leq x<0\end{cases}
$$

(Show the steps of your integration. Do not write the answer from memory!)

Solution: We calculate

$$
a_{0}=\frac{1}{\pi} \int_{0}^{\pi} x d x=\frac{\pi}{2}
$$

(1 Mark for this.)
Next, we have

$$
a_{n}=\frac{1}{\pi} \int_{0}^{\pi} x \cos (n x) d x
$$

We integrate by parts (1 Mark for this)

$$
a_{n}=\frac{1}{\pi} \int_{0}^{\pi} x d\left(\frac{\sin (n x)}{n}\right)=\frac{1}{\pi} \int_{0}^{\pi} d\left(x \frac{\sin (n x)}{n}+\frac{\cos (n x)}{n^{2}}\right)
$$

So one evaluates (1 Mark for this)

$$
a_{n}=\left.\frac{1}{\pi}\left(x \frac{\sin (n x)}{n}+\frac{\cos (n x)}{n^{2}}\right)\right|_{x=0} ^{\pi}=\frac{1}{\pi} \frac{(-1)^{n}-1}{n^{2}}
$$

Similarly, we have

$$
b_{n}=\frac{1}{\pi} \int_{0}^{\pi} x \sin (n x) d x
$$

We integrate by parts (1 Mark for this)

$$
b_{n}=\frac{-1}{\pi} \int_{0}^{\pi} x d\left(\frac{\cos (n x)}{n}\right)=\frac{-1}{\pi} \int_{0}^{\pi} d\left(x \frac{\cos (n x)}{n}-\frac{\sin (n x)}{n^{2}}\right)
$$

So one evaluates (1 Mark for this)

$$
b_{n}=\left.\frac{-1}{\pi}\left(x \frac{\cos (n x)}{n}-\frac{\sin (n x)}{n^{2}}\right)\right|_{x=0} ^{\pi}=\frac{(-1)^{n+1}}{n}
$$

Putting it all together the Fourier series is

$$
\frac{\pi}{4}-\frac{2}{\pi} \sum_{k=0}^{\infty} \frac{\cos (2 k+1) x}{(2 k+1)^{2}}+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n x)}{n}
$$

