Assignment 6

Solutions to Assignment 6

1. Solve the following first-order equations with regular singularities. Also solve them by the method of separation of variables/exact differentials and compare the solutions.

$$x\frac{dy}{dx} = \frac{2}{5}y$$
$$x\frac{dy}{dx} = \left(\frac{2}{5} + x\right)y$$
$$x\frac{dy}{dx} = \left(\frac{2}{5} + \frac{1}{3}x\right)y$$

Solution: In each case we put $y = \sum_{m} a_m x^m$ as a formal sum with the understanding that *m*'s need not be integers and that $a_m = 0$ for sufficiently negative *m*.

We obtain the equations (by equating coefficients of x^m) in each case:

$$ma_m = \frac{2}{5}a_m$$

$$ma_m = \frac{2}{5}a_m + a_{m-1}$$

$$ma_m = \frac{2}{5}a_m + \frac{1}{3}a_{m-1}$$

The first equation gives $a_m \neq 0$ if and only if m = 2/5. So the solution is $y = cx^{2/5}$ which is also pretty evident!

The second and third equations express a_m as a multiple of a_{m-1} unless m = 2/5. It follows that if $m - k \neq 2/5$ for any non-negative integer k, then, since $a_{m-k} = 0$ for k sufficiently large, so is a_m . In other words, the only non-zero a_m are for m = k + 2/5 for non-negative integers k. In those cases we obtain the identities

$$a_{k+2/5} = \frac{1}{k!}a_{2/5}$$
$$a_{k+2/5} = \frac{1}{3^k \cdot k!}a_{2/5}$$

This gives the solution $y = cx^{2/5} \exp(x)$ for the second equation and $y = cx^{2/5} \exp(x/3)$ for the third equation.

2. Solve the following second-order equations with regular singularities.

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - \frac{1}{9}y = 0$$
$$x^{2}\frac{d^{2}y}{dx^{2}} + x(1+x)\frac{dy}{dx} - \frac{1}{9}y = 0$$
$$x^{2}\frac{d^{2}y}{dx^{2}} + x(1+x)\frac{dy}{dx} - \left(\frac{1}{9} + x\right)y = 0$$

Solution: In each case we put $y = \sum_{m} a_m x^m$ as a formal sum with the understanding that *m*'s need not be integers and that $a_m = 0$ for sufficiently negative *m*.

We obtain the equations (by equating coefficients of x^m) in each case:

$$m(m-1)a_m + ma_m - \frac{1}{9}a_m = 0$$

$$m(m-1)a_m + ma_m + (m-1)a_{m-1} - \frac{1}{9}a_m = 0$$

$$m(m-1)a_m + ma_m + (m-1)a_{m-1} - \frac{1}{9}a_m + a_{m-1} = 0$$

In each case, a_m is multiplied by $m^2 - (1/9)$ which zero if and only if $m = \pm 1/3$.

In the first equation, when $m^2 - (1/9)$ is non-zero, then $a_m = 0$. So the general solution takes the form $y = ax^{-1/3} + bx^{1/3}$, with $a_{-1/3} = a$ and $a_{1/3} = b$.

The second and third equations express a_m as a multiple of a_{m-1} unless $m^2 - 1/9 = 0$. It follows that if $m - k \neq \pm 1/3$ for any non-negative integer k, then, since $a_{m-k} = 0$ for k sufficiently large, so is a_m . In other words, the only non-zero a_m are for m = k - 1/3 and m = k + 1/3 for non-negative integers k.

So, in each case we put $b_k = a_{k-1/3}$ and $c_k = a_{k+1/3}$.

We then obtain the identities (for all $k \ge 0$) as follows (the first row is for the second equation and the second row is for the third equation):

$$b_{k+1} = -\frac{3k-4}{k(3k-2)}b_k \qquad c_{k+1} = -\frac{3k-2}{k(3k+2)}c_k$$
$$b_{k+1} = -\frac{3k-7}{k(3k-2)}b_k \qquad c_{k+1} = -\frac{3k-5}{k(3k+2)}c_k$$

This identities inductively define all b_k in terms of b_0 and all c_k in terms of c_0 . In each case the general solution is of the form

$$y(x) = x^{-1/3} \sum_{k=0}^{\infty} b_k x^k + x^{1/3} \sum_{k=0}^{\infty} c_k x^k$$

3. Find one Frobenius solution of the following second-order equations with regular singularities. If another Frobenius solution is possible, then find that as well. (A Frobenius solution is a solution in terms of powers of x for x > 0.)

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - \frac{1}{4}y = 0$$
$$x^{2}\frac{d^{2}y}{dx^{2}} + x(1+x)\frac{dy}{dx} - \frac{1}{4}y = 0$$
$$x^{2}\frac{d^{2}y}{dx^{2}} + x(1+x)\frac{dy}{dx} - \left(\frac{1}{4} + x\right)y = 0$$

Solution: In each case we put $y = \sum_{m} a_m x^m$ as a formal sum with the understanding that *m*'s need not be integers and that $a_m = 0$ for sufficiently negative *m*.

We obtain the equations (by equating coefficients of x^m) in each case:

$$m(m-1)a_m + ma_m - \frac{1}{4}a_m = 0$$
$$m(m-1)a_m + ma_m + (m-1)a_{m-1} - \frac{1}{4}a_m = 0$$
$$m(m-1)a_m + ma_m + (m-1)a_{m-1} - \frac{1}{4}a_m + a_{m-1} = 0$$

In each case, a_m is multiplied by $m^2 - (1/4)$ which zero if and only if $m = \pm 1/2$. In the first equation, when $m^2 - (1/4)$ is non-zero, then $a_m = 0$. So the general solution takes the form $y = ax^{-1/2} + bx^{1/2}$, with $a_{-1/2} = a$ and $a_{1/2} = b$.

The second and third equations express a_m as a multiple of a_{m-1} unless $m^2 - 1/4 = 0$. It follows that if $m - k \neq \pm 1/4$ for any non-negative integer k, then, since $a_{m-k} = 0$ for k sufficiently large, so is a_m . In other words, the only possible non-zero a_m are for m = k - 1/2 and m = k + 1/2 for non-negative integers k.

Unlike the previous case, (k - 1/2) = (k + 1/2) - 1. So, we only obtain a solution in this form for m = k + 1/2 (1/2 is the *larger* of the two roots) with non-negative integers k. So, in each case we put $b_k = a_{k+1/2}$.

We then obtain the identities (for all $k \ge 0$) as follows (the first row is for the second equation and the second row is for the third equation):

$$b_{k+1} = -\frac{2k-1}{2k(k+1)}b_k$$
$$b_{k+1} = -\frac{2k-3}{2k(k+1)}b_k$$

This identities inductively define all b_k in terms of b_0 . In each case the general Frobenius solution is of the form

$$y(x) = x^{1/2} \sum_{k=0}^{\infty} b_k x^k$$

4. Given an equation $x^2y'' + pxy' + qy = 0$, where p and q are (convergent) power series in x such that $(p(0) - 1)^2 > 4q(0)$. Find a substitution of the form $y = x^a z$ so that the equation for z has the form $x^2z'' + rxz' + sz = 0$ where r(0) = 1 and s(0) < 0.

Solution: If we substitute y as required, we obtain

$$y' = ax^{a-1}z + x^{a}z'$$

$$y'' = a(a-1)x^{a-2}z + 2ax^{a-1}z' + x^{a}z''$$

Substituting this in the equation, we obtain

$$(a(a-1)x^{a}z + 2ax^{a+1}z' + x^{a+2}z'') + p(ax^{a}z + x^{a+1}z') + qx^{a}y = 0$$

Dividing by x^a , we get

$$x^{2}z'' + (2a+p)xz' + (a(a-1)+ap+q)z = 0$$

So we have r = 2a + p and s = a(a-1) + ap + q. Which means that r(0) = 2a + p(0) and $s(0) = a^2 + a(p(0) - 1) + q(0)$. If we put a = (1 - p(0))/2, then we check easily that s(0) < 0.

5. Given an equation $x^2y'' + pxy' + qy = 0$, where p and q are (convergent) power series in x such that $p(0) \ge 1$ and q(0) = 0. Show that there is a power series in x which solves this equation.

Solution: The indicial equation for this equation is $m^2 + (p(0) - 1)m = 0$. It follows that $m_1 = 0$ is the larger root. Hence, the Frobenius solution is an ordinary power series.

One can also check this by directly substituting a power series $y = \sum_{k=0}^{\infty} a_k x^k$ in the above equation as a formal solution. We then check that we obtain an inductive formula for a_k in terms of a_{k-r} for $r \ge 1$ an integer. The denominator of this expression is $k^2 + (p(0) - 1)k$ which is (due to the hypothesis) larger than k^2 . One can use this to prove the convergence.