Solutions to Assignment 6

1. Solve the following first-order equations with regular singularities. Also solve them by the method of separation of variables/exact differentials and compare the solutions.

$$
\begin{aligned}
x \frac{d y}{d x} & =\frac{2}{5} y \\
x \frac{d y}{d x} & =\left(\frac{2}{5}+x\right) y \\
x \frac{d y}{d x} & =\left(\frac{2}{5}+\frac{1}{3} x\right) y
\end{aligned}
$$

Solution: In each case we put $y=\sum_{m} a_{m} x^{m}$ as a formal sum with the understanding that m 's need not be integers and that $a_{m}=0$ for sufficiently negative m.

We obtain the equations (by equating coefficients of x^{m}) in each case:

$$
\begin{aligned}
m a_{m} & =\frac{2}{5} a_{m} \\
m a_{m} & =\frac{2}{5} a_{m}+a_{m-1} \\
m a_{m} & =\frac{2}{5} a_{m}+\frac{1}{3} a_{m-1}
\end{aligned}
$$

The first equation gives $a_{m} \neq 0$ if and only if $m=2 / 5$. So the solution is $y=c x^{2 / 5}$ which is also pretty evident!
The second and third equations express a_{m} as a multiple of a_{m-1} unless $m=2 / 5$. It follows that if $m-k \neq 2 / 5$ for any non-negative integer k, then, since $a_{m-k}=0$ for k sufficiently large, so is a_{m}. In other words, the only non-zero a_{m} are for $m=k+2 / 5$ for non-negative integers k. In those cases we obtain the identities

$$
\begin{aligned}
& a_{k+2 / 5}=\frac{1}{k!} a_{2 / 5} \\
& a_{k+2 / 5}=\frac{1}{3^{k} \cdot k!} a_{2 / 5}
\end{aligned}
$$

This gives the solution $y=c x^{2 / 5} \exp (x)$ for the second equation and $y=c x^{2 / 5} \exp (x / 3)$ for the third equation.
2. Solve the following second-order equations with regular singularities.

$$
\begin{aligned}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-\frac{1}{9} y & =0 \\
x^{2} \frac{d^{2} y}{d x^{2}}+x(1+x) \frac{d y}{d x}-\frac{1}{9} y & =0 \\
x^{2} \frac{d^{2} y}{d x^{2}}+x(1+x) \frac{d y}{d x}-\left(\frac{1}{9}+x\right) y & =0
\end{aligned}
$$

Solution: In each case we put $y=\sum_{m} a_{m} x^{m}$ as a formal sum with the understanding that m 's need not be integers and that $a_{m}=0$ for sufficiently negative m.
We obtain the equations (by equating coefficients of x^{m}) in each case:

$$
\begin{aligned}
m(m-1) a_{m}+m a_{m}-\frac{1}{9} a_{m} & =0 \\
m(m-1) a_{m}+m a_{m}+(m-1) a_{m-1}-\frac{1}{9} a_{m} & =0 \\
m(m-1) a_{m}+m a_{m}+(m-1) a_{m-1}-\frac{1}{9} a_{m}+a_{m-1} & =0
\end{aligned}
$$

In each case, a_{m} is multiplied by $m^{2}-(1 / 9)$ which zero if and only if $m= \pm 1 / 3$.
In the first equation, when $m^{2}-(1 / 9)$ is non-zero, then $a_{m}=0$. So the general solution takes the form $y=a x^{-1 / 3}+b x^{1 / 3}$, with $a_{-1 / 3}=a$ and $a_{1 / 3}=b$.
The second and third equations express a_{m} as a multiple of a_{m-1} unless $m^{2}-1 / 9=0$. It follows that if $m-k \neq \pm 1 / 3$ for any non-negative integer k, then, since $a_{m-k}=0$ for k sufficiently large, so is a_{m}. In other words, the only non-zero a_{m} are for $m=k-1 / 3$ and $m=k+1 / 3$ for non-negative integers k.
So, in each case we put $b_{k}=a_{k-1 / 3}$ and $c_{k}=a_{k+1 / 3}$.
We then obtain the identities (for all $k \geq 0$) as follows (the first row is for the second equation and the second row is for the third equation):

$$
\begin{array}{ll}
b_{k+1}=-\frac{3 k-4}{k(3 k-2)} b_{k} & c_{k+1}=-\frac{3 k-2}{k(3 k+2)} c_{k} \\
b_{k+1}=-\frac{3 k-7}{k(3 k-2)} b_{k} & c_{k+1}=-\frac{3 k-5}{k(3 k+2)} c_{k}
\end{array}
$$

This identities inductively define all b_{k} in terms of b_{0} and all c_{k} in terms of c_{0}.
In each case the general solution is of the form

$$
y(x)=x^{-1 / 3} \sum_{k=0}^{\infty} b_{k} x^{k}+x^{1 / 3} \sum_{k=0}^{\infty} c_{k} x^{k}
$$

3. Find one Frobenius solution of the following second-order equations with regular singularities. If another Frobenius solution is possible, then find that as well. (A Frobenius solution is a solution in terms of powers of x for $x>0$.)

$$
\begin{aligned}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-\frac{1}{4} y & =0 \\
x^{2} \frac{d^{2} y}{d x^{2}}+x(1+x) \frac{d y}{d x}-\frac{1}{4} y & =0 \\
x^{2} \frac{d^{2} y}{d x^{2}}+x(1+x) \frac{d y}{d x}-\left(\frac{1}{4}+x\right) y & =0
\end{aligned}
$$

Solution: In each case we put $y=\sum_{m} a_{m} x^{m}$ as a formal sum with the understanding that m 's need not be integers and that $a_{m}=0$ for sufficiently negative m.

We obtain the equations (by equating coefficients of x^{m}) in each case:

$$
\begin{array}{r}
m(m-1) a_{m}+m a_{m}-\frac{1}{4} a_{m}=0 \\
m(m-1) a_{m}+m a_{m}+(m-1) a_{m-1}-\frac{1}{4} a_{m}=0 \\
m(m-1) a_{m}+m a_{m}+(m-1) a_{m-1}-\frac{1}{4} a_{m}+a_{m-1}=0
\end{array}
$$

In each case, a_{m} is multiplied by $m^{2}-(1 / 4)$ which zero if and only if $m= \pm 1 / 2$.
In the first equation, when $m^{2}-(1 / 4)$ is non-zero, then $a_{m}=0$. So the general solution takes the form $y=a x^{-1 / 2}+b x^{1 / 2}$, with $a_{-1 / 2}=a$ and $a_{1 / 2}=b$.
The second and third equations express a_{m} as a multiple of a_{m-1} unless $m^{2}-1 / 4=0$. It follows that if $m-k \neq \pm 1 / 4$ for any non-negative integer k, then, since $a_{m-k}=0$ for k sufficiently large, so is a_{m}. In other words, the only possible non-zero a_{m} are for $m=k-1 / 2$ and $m=k+1 / 2$ for non-negative integers k.

Unlike the previous case, $(k-1 / 2)=(k+1 / 2)-1$. So, we only obtain a solution in this form for $m=k+1 / 2$ (1/2 is the larger of the two roots) with non-negative integers k. So, in each case we put $b_{k}=a_{k+1 / 2}$.
We then obtain the identities (for all $k \geq 0$) as follows (the first row is for the second equation and the second row is for the third equation):

$$
\begin{aligned}
& b_{k+1}=-\frac{2 k-1}{2 k(k+1)} b_{k} \\
& b_{k+1}=-\frac{2 k-3}{2 k(k+1)} b_{k}
\end{aligned}
$$

This identities inductively define all b_{k} in terms of b_{0}.
In each case the general Frobenius solution is of the form

$$
y(x)=x^{1 / 2} \sum_{k=0}^{\infty} b_{k} x^{k}
$$

4. Given an equation $x^{2} y^{\prime \prime}+p x y^{\prime}+q y=0$, where p and q are (convergent) power series in x such that $(p(0)-1)^{2}>4 q(0)$. Find a substitution of the form $y=x^{a} z$ so that the equation for z has the form $x^{2} z^{\prime \prime}+r x z^{\prime}+s z=0$ where $r(0)=1$ and $s(0)<0$.

Solution: If we substitute y as required, we obtain

$$
\begin{aligned}
y^{\prime} & =a x^{a-1} z+x^{a} z^{\prime} \\
y^{\prime \prime} & =a(a-1) x^{a-2} z+2 a x^{a-1} z^{\prime}+x^{a} z^{\prime \prime}
\end{aligned}
$$

Substituting this in the equation, we obtain

$$
\left(a(a-1) x^{a} z+2 a x^{a+1} z^{\prime}+x^{a+2} z^{\prime \prime}\right)+p\left(a x^{a} z+x^{a+1} z^{\prime}\right)+q x^{a} y=0
$$

Dividing by x^{a}, we get

$$
x^{2} z^{\prime \prime}+(2 a+p) x z^{\prime}+(a(a-1)+a p+q) z=0
$$

So we have $r=2 a+p$ and $s=a(a-1)+a p+q$. Which means that $r(0)=2 a+p(0)$ and $s(0)=a^{2}+a(p(0)-1)+q(0)$. If we put $a=(1-p(0)) / 2$, then we check easily that $s(0)<0$.
5. Given an equation $x^{2} y^{\prime \prime}+p x y^{\prime}+q y=0$, where p and q are (convergent) power series in x such that $p(0) \geq 1$ and $q(0)=0$. Show that there is a power series in x which solves this equation.

Solution: The indicial equation for this equation is $m^{2}+(p(0)-1) m=0$. It follows that $m_{1}=0$ is the larger root. Hence, the Frobenius solution is an ordinary power series.
One can also check this by directly substituting a power series $y=\sum_{k=0}^{\infty} a_{k} x^{k}$ in the above equation as a formal solution. We then check that we obtain an inductive formula for a_{k} in terms of a_{k-r} for $r \geq 1$ an integer. The denominator of this expression is $k^{2}+(p(0)-1) k$ which is (due to the hypothesis) larger than k^{2}. One can use this to prove the convergence.

