Solutions to Assignment 5

- 1. Use the Power Series method to solve the following differential equations. (Taken from Chapter 3 of Simmons' book on differential equations.)
 - (a) dy/dx = 2xy. Also solve this as a linear homogeneous equation and compare the solution.

Solution: If $y = \sum_{n} a_n x^n$ is the potential power series solution then we obtain, by equating coefficients of x^n , the identity $na_n = 2a_{n-2}$ for $n \ge 2$. We also obtain $a_1 = 0$. There is no condition on a_0 . We obtain $a_2 = a_0$, $a_3 = 2a_1/3 = 0$, and more generally

$$a_n = \begin{cases} \frac{1}{k!}a_0 & n = 2k\\ 0 & n = 2k+1 \end{cases}$$

The solution of the linear homogeneous equation is $c \exp(x^2)$ which agrees with this by writing out the power series for $\exp(x^2)$ and putting $c = a_0$

(b) dy/dx = x - y and y(0) = 0. Also solve this as a linear inhomogeneous equation and compare the solution.

Solution: If $y = \sum_{n} a_n x^n$ is the potential power series solution then we obtain, by equating coefficients of x^n , the identity $na_n = -a_{n-1}$ for $n \ge 3$. We also obtain $a_1 = -a_0$ and $2a_2 = 1 - a_1$. There is no condition on a_0 . Putting $a_0 = y(0) = 0$, we obtain $a_2 = 1$, $a_3 = -(1)/3$, and more generally

$$a_n = \begin{cases} \frac{(-1)^k}{k!} & n \ge 2\\ 0 & n = 1 \end{cases}$$

The solution of the linear inhomogeneous equation is $(x - 1) + \exp(-x)$ which agrees with this by writing out the power series for $\exp(-x)$.

(c) $dy/dx = 1+y^2$. It may not be easy to find a recursion formula for the *n*-th coefficient so just calculate the first 5 coefficients.

Solution: Assuming $y = \sum_{n} a_n x^n$, we see that $a_n = y^{(n)}(0)/(n!)$; where we use the notation $y^{(n)} = d^n y/dx^n$.

We repeatedly differentiate the differential equation to obtain

$$y^{(1)} = 1 + y^{2}$$

$$y^{(2)}(0) = 2yy^{(1)} = 2y + 2y^{3}$$

$$y^{(3)}(0) = (2 + 6y^{2})y^{(1)} = 2 + 8y^{2} + 6y^{4}$$

$$y^{(4)}(0) = (16y + 24y^{3})y^{(1)} = 16y + 40y^{3} + 24y^{5}$$

Using y(0) = c, we obtain

$$y = c + (1 + c^{2})x + c(1 + c^{2})x^{2} + (1 + 4c^{2} + 6c^{4})(x^{3}/3) + (2c + 5c^{3} + 3c^{5})(x^{4}/3) + \cdots$$

(d) $d^2y/dx^2 = -xy$.

Solution: If $y = \sum_{n} a_n x^n$ is the potential power series solution then we obtain, by equating coefficients of x^n , the identity $n(n-1)a_n = -a_{n-3}$ for $n \ge 3$ and $a_2 = 0$. There is no condition on a_0 or a_1 . We obtain for all $k \ge 0$,

$$a_n = \begin{cases} \frac{(-1)^k}{(3k)(3k-1)(3k-3)(3k-4)\cdots}a_0 & n = 3k\\ \frac{(-1)^k}{(3k+1)(3k)(3k-2)(3k-3)\cdots}a_1 & n = 3k+1\\ 0 & n = 3k+2 \end{cases}$$

(e) $(d^2y/dx^2) - 2x(dy/dx) + 2ay = 0.$

Solution: If $y = \sum_{n} a_n x^n$ is the potential power series solution then we obtain, by equating coefficients of x^n , the identity $n(n-1)a_n - 2(n-2)a_{n-2} + 2aa_{n-2} = 0$ for $n \ge 2$. There is no condition on a_0 or a_1 . We obtain for all $k \ge 0$,

$$a_n = \begin{cases} 2^k \frac{a(a-2)\cdots(a-2k+2)}{(2k)!} a_0 & n = 2k \\ 2^k \frac{(a-1)(a-3)\cdots(a-2k+1)}{(2k+1)!} a_1 & n = 2k+1 \end{cases}$$

In particular, we note that if a is an integer then one of the solutions is a polynomial.