Solutions to Assignment 5

1. Use the Power Series method to solve the following differential equations. (Taken from Chapter 3 of Simmons' book on differential equations.)
(a) $d y / d x=2 x y$. Also solve this as a linear homogeneous equation and compare the solution.

Solution: If $y=\sum_{n} a_{n} x^{n}$ is the potential power series solution then we obtain, by equating coefficients of x^{n}, the identity $n a_{n}=2 a_{n-2}$ for $n \geq 2$. We also obtain $a_{1}=0$. There is no condition on a_{0}. We obtain $a_{2}=a_{0}, a_{3}=2 a_{1} / 3=0$, and more generally

$$
a_{n}= \begin{cases}\frac{1}{k!} a_{0} & n=2 k \\ 0 & n=2 k+1\end{cases}
$$

The solution of the linear homogeneous equation is $c \exp \left(x^{2}\right)$ which agrees with this by writing out the power series for $\exp \left(x^{2}\right)$ and putting $c=a_{0}$
(b) $d y / d x=x-y$ and $y(0)=0$. Also solve this as a linear inhomogeneous equation and compare the solution.

Solution: If $y=\sum_{n} a_{n} x^{n}$ is the potential power series solution then we obtain, by equating coefficients of x^{n}, the identity $n a_{n}=-a_{n-1}$ for $n \geq 3$. We also obtain $a_{1}=-a_{0}$ and $2 a_{2}=1-a_{1}$. There is no condition on a_{0}. Putting $a_{0}=y(0)=0$, we obtain $a_{2}=1, a_{3}=-(1) / 3$, and more generally

$$
a_{n}= \begin{cases}\frac{(-1)^{k}}{k!} & n \geq 2 \\ 0 & n=1\end{cases}
$$

The solution of the linear inhomogeneous equation is $(x-1)+\exp (-x)$ which agrees with this by writing out the power series for $\exp (-x)$.
(c) $d y / d x=1+y^{2}$. It may not be easy to find a recursion formula for the n-th coefficient so just calculate the first 5 coefficients.

Solution: Assuming $y=\sum_{n} a_{n} x^{n}$, we see that $a_{n}=y^{(n)}(0) /(n!)$; where we use the notation $y^{(n)}=d^{n} y / d x^{n}$.
We repeatedly differentiate the differential equation to obtain

$$
\begin{aligned}
y^{(1)} & =1+y^{2} \\
y^{(2)}(0) & =2 y y^{(1)} \\
y^{(3)}(0) & =\left(2+6 y^{2}\right) y^{(1)} \\
y^{(4)}(0) & =\left(16 y+24 y^{3}\right) y^{(1)}
\end{aligned}
$$

Using $y(0)=c$, we obtain

$$
y=c+\left(1+c^{2}\right) x+c\left(1+c^{2}\right) x^{2}+\left(1+4 c^{2}+6 c^{4}\right)\left(x^{3} / 3\right)+\left(2 c+5 c^{3}+3 c^{5}\right)\left(x^{4} / 3\right)+\cdots
$$

(d) $d^{2} y / d x^{2}=-x y$.

Solution: If $y=\sum_{n} a_{n} x^{n}$ is the potential power series solution then we obtain, by equating coefficients of x^{n}, the identity $n(n-1) a_{n}=-a_{n-3}$ for $n \geq 3$ and $a_{2}=0$. There is no condition on a_{0} or a_{1}. We obtain for all $k \geq 0$,

$$
a_{n}= \begin{cases}\frac{(-1)^{k}}{(3 k)(3 k-1)(3 k-3)(3 k-4) \cdots} a_{0} & n=3 k \\ \frac{(-1)^{k}}{(3 k+1)(3 k)(3 k-2)(3 k-3) \cdots} a_{1} & n=3 k+1 \\ 0 & n=3 k+2\end{cases}
$$

(e) $\left(d^{2} y / d x^{2}\right)-2 x(d y / d x)+2 a y=0$.

Solution: If $y=\sum_{n} a_{n} x^{n}$ is the potential power series solution then we obtain, by equating coefficients of x^{n}, the identity $n(n-1) a_{n}-2(n-2) a_{n-2}+2 a a_{n-2}=0$ for $n \geq 2$. There is no condition on a_{0} or a_{1}. We obtain for all $k \geq 0$,

$$
a_{n}= \begin{cases}2^{k} \frac{a(a-2) \cdots(a-2 k+2)}{(2 k)!} a_{0} & n=2 k \\ 2^{k} \frac{(a-1)(a-3) \cdots(a-2 k+1)}{(2 k+1)!} a_{1} & n=2 k+1\end{cases}
$$

In particular, we note that if a is an integer then one of the solutions is a polynomial.

