Solutions to Assignment 4

1. Determine with of the following are exact and solve those which are exact. (Taken from Section 2.8 of Simmons' book on differential equations.)
(a) $y d x+(x+2 / y) d y=0$.

Solution: We have $(M, N)=(y, x+2 / y)$. We check

$$
\frac{\partial M}{\partial y}=1=\frac{\partial N}{\partial x}
$$

So we can put

$$
\Phi(x, y)=\int M d x+\int\left(N-\frac{\partial}{\partial y} \int M d x\right) d y
$$

which we calculate as

$$
\Phi(x, y)=x y+2 \log y
$$

(b) $\left(y-x^{2}\right) d x+\left(x+y^{2}\right) d y=0$.

Solution: We have $(M, N)=\left(y-x^{2}, x+y^{2}\right)$. We check

$$
\frac{\partial M}{\partial y}=1=\frac{\partial N}{\partial x}
$$

So we can put

$$
\Phi(x, y)=\int M d x+\int\left(N-\frac{\partial}{\partial y} \int M d x\right) d y
$$

which we calculate as

$$
\Phi(x, y)=x y-x^{3} / 3+y^{3} / 3
$$

(c) $\left(\cos x \cos ^{2} y\right) d x+2(\sin x \sin y \cos y) d y=0$.

Solution: We have $(M, N)=\left(\cos x \cos ^{2} y, 2(\sin x \sin y \cos y)\right.$. We check

$$
\frac{\partial M}{\partial y}=-2 \cos x \sin y \cos y \neq 2 \cos x \sin y \cos y=\frac{\partial N}{\partial x}
$$

So this is not exact. On the other hand we see that the following equation is exact.

$$
\left(\cos x \cos ^{2} y\right) d x-2(\sin x \sin y \cos y) d y=0
$$

For this equation we calculate easily (or by inspection!)

$$
\Phi(x, y)=\sin x \cos ^{2} y
$$

(d) $(1+y) d x+(1-x) d y=0$.

Solution: We have $(M, N)=(1+y, 1-x)$. We check

$$
\frac{\partial M}{\partial y}=1 \neq-1=\frac{\partial N}{\partial x}
$$

So this is not exact. On the other hand we see that the following equation is exact.

$$
(1+y) d x-(1-x) d y=0
$$

We get easily by inspection that

$$
\Phi(x, y)=x-y+x y
$$

2. Solve each of the following equations by finding an integration factor. (Taken from Section 2.9 of Simmons' book on differential equations.)
(a) $\left(3 x^{2}-y^{2}\right) d x-(2 x y) d y=0$.

Solution: We have $(M, N)=\left(3 x^{2}-y^{2},-2 x y\right)$. We check

$$
\frac{\partial M}{\partial y}=-2 y=\frac{\partial N}{\partial x}
$$

So we can take the integration factor as 1 !

$$
\Phi(x, y)=\int M d x+\int\left(N-\frac{\partial}{\partial y} \int M d x\right) d y
$$

which we calculate as

$$
\Phi(x, y)=x^{3}-x y^{2}
$$

(b) $y d x+\left(x+3 x^{3} y^{4}\right) d y=0$.

Solution: We have $(M, N)=\left(y, x+3 x^{3} y^{4}\right)$. We check

$$
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=1-\left(1+9 x^{2} y^{4}\right)=-9 x^{2} y^{4}
$$

To find the integration factor q, we need to solve the equation

$$
\frac{\partial q}{\partial x}\left(x+3 x^{3} y^{4}\right)-\frac{\partial q}{\partial y} y=\left(-9 x^{2} y^{4}\right) q
$$

This looks difficult. However, we note that if $q=x^{a} y^{a}$, then

$$
\begin{aligned}
& \frac{\partial q}{\partial x}=a x^{a-1} y^{a} \\
& \frac{\partial q}{\partial y}=a x^{a} y^{a-1}
\end{aligned}
$$

Substituting, we obtain

$$
a x^{a} y^{a}\left(1+3 x^{2} y^{4}\right)-a x^{a} y^{a}=\left(-9 x^{2} y^{4}\right)\left(x^{a} y^{a}\right)
$$

which simplifies to $3 a x^{a+2} y^{a+4}=-9 x^{a+2} y^{a+4}$. This has the solution $a=-3$. So, we put the integration factor as $q=1 /(x y)^{3}$.

$$
\Phi(x, y)=\int q M d x+\int\left(q N-\frac{\partial}{\partial y} \int q M d x\right) d y
$$

which we calculate as

$$
\Phi(x, y)=\frac{-1}{2 x^{2} y^{2}}+\frac{1}{2 y^{2}}
$$

(c) $(x-y) d x+(x+y) d y=0$.

Solution: We have $(M, N)=(x-y, x+y)$. We check

$$
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=-2
$$

To find the integration factor q, we need to solve the equation

$$
\frac{\partial q}{\partial x}(x+y)-\frac{\partial q}{\partial y}(x-y)=-2 q
$$

This looks difficult. On the other hand we can solve the linear equations with constant coefficients

$$
\begin{aligned}
& \frac{d x}{d t}=x+y \\
& \frac{d y}{d t}=y-x
\end{aligned}
$$

These are the parametric equations of the curves $\Phi(x, y)=c$ that we are looking for. The parametric curve is then

$$
\binom{x(t)}{y(t)}=\binom{e^{t}(a \cos t+b \sin t)}{e^{t}(-a \sin t+b \cos t)}
$$

It follows that $\frac{x(t)}{y(t)}=\tan (t+\theta)$ where $\tan \theta=a / b$. In other words, we see that $t=\tan ^{-1}(x / y)-\theta$. Further, we have $x^{2}+y^{2}=e^{2 t}\left(a^{2}+b^{2}\right)$, so that $t=(1 / 2) \log \left(x^{2}+y^{2}\right)-\log r$ for $r^{2}=\left(a^{2}+b^{2}\right)$. It follows that

$$
\Phi(x, y)=(1 / 2) \log \left(x^{2}+y^{2}\right)-\tan ^{-1}(x / y)
$$

is the function whose level curves are the trajectories. (A more geometric approach is to note that these are the logarithmic spirals.)

