Equations with regular singularities

1. Solve the following first-order equations with regular singularities. Also solve them by the method of separation of variables/exact differentials and compare the solutions.

$$
\begin{aligned}
& x \frac{d y}{d x}=\frac{2}{5} y \\
& x \frac{d y}{d x}=\left(\frac{2}{5}+x\right) y \\
& x \frac{d y}{d x}=\left(\frac{2}{5}+\frac{1}{3} x\right) y
\end{aligned}
$$

2. Solve the following second-order equations with regular singularities.

$$
\begin{aligned}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-\frac{1}{9} y & =0 \\
x^{2} \frac{d^{2} y}{d x^{2}}+x(1+x) \frac{d y}{d x}-\frac{1}{9} y & =0 \\
x^{2} \frac{d^{2} y}{d x^{2}}+x(1+x) \frac{d y}{d x}-\left(\frac{1}{9}+x\right) y & =0
\end{aligned}
$$

3. Find one Frobenius solution of the following second-order equations with regular singularities. If another Frobenius solution is possible, then find that as well. (A Frobenius solution is a solution in terms of powers of x for $x>0$.)

$$
\begin{aligned}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-\frac{1}{4} y & =0 \\
x^{2} \frac{d^{2} y}{d x^{2}}+x(1+x) \frac{d y}{d x}-\frac{1}{4} y & =0 \\
x^{2} \frac{d^{2} y}{d x^{2}}+x(1+x) \frac{d y}{d x}-\left(\frac{1}{4}+x\right) y & =0
\end{aligned}
$$

4. Given an equation $x^{2} y^{\prime \prime}+p x y^{\prime}+q y=0$, where p and q are (convergent) power series in x such that $(p(0)-1)^{2}>4 q(0)$. Find a substitution of the form $y=x^{a} z$ so that the equation for z has the form $x^{2} z^{\prime \prime}+r x z^{\prime}+s z=0$ where $r(0)=1$ and $s(0)<0$.
5. Given an equation $x^{2} y^{\prime \prime}+p x y^{\prime}+q y=0$, where p and q are (convergent) power series in x such that $p(0) \geq 1$ and $q(0)=0$. Show that there is a power series in x which solves this equation.
