Indian Institute of Science Education and Research Mohali

Introduction to Computers (IDC101)

Academic Session 2018-19

1. Import numpy as np . Try np.arange(n), .shape, .reshape(r, s), .ndim, np.zeros(r,s), np.ones(r,s), .linspace(a, b, n). np.eye(n), .min(), .max().
2. Write a function randvect (n) that returns a one dimensional array of size n, whose entries are random numbers between 0 and 1 . Use your plotting skills to guess if these entries follow a uniform distribution, as n increases.
3. Write a function toss (p) that simulates a coin toss. That is, it returns H with probability p and T with probability $1-p$. Now, n such coins are tossed and for $r \leq n$ the integer $P(r)$ denotes the number of coins where H appears. Estimate $P(r)$ by conducting this experiment 10000 times.
4. A magic square with row/column sum n is a square matrix with integer entries whose each row and column adds up to n. Write a program to check if a given matrix is a magic square.
5. Let $A(n, r)$ denote an $n \times n$ matrix whose first row is $0,1^{r}, 2^{r}, \cdots,(n-1)^{r}$, the second row is $n^{r},(n+1)^{r},(n+2)^{r},(2 n-1)^{r}$, and so on. Write a function that returns $A(n, r)$ for given n and r. For various values of n and r, plot n vs determinant of $A(n, r)$. Also plot n vs trace of $A(n, 1)$.
6. Write a program that solves a given linear system of equations for x, y and z,

$$
\begin{aligned}
& a_{11} x+a_{12} y+a_{13} z=b_{1} \\
& a_{21} x+a_{22} y+a_{23} z=b_{2} \\
& a_{31} x+a_{32} y+a_{33} z=b_{3}
\end{aligned}
$$

where $a_{i j}$ and b_{k} are real numbers.

