Algebraic tricks

Some algebraic tricks can be used to find integration factors in some special cases. The derivations given below are best understood by solving some explicit example while following these notes.
If we have $d \Phi=M d x+N d y$, then

$$
d\left(\Phi^{a}\right)=a \Phi^{a-1} d \Phi=a \Phi^{a-1}(M d x+N d y)
$$

Secondly, If $\Psi(x, y)=f(x)+g(y)$ then

$$
d \Psi=\frac{d f}{d x} d x+\frac{d g}{d y} d y
$$

Combining these two identities we see that

$$
d\left((1 / a) \Phi^{a}+\Psi\right)=\Phi^{a-1}\left(\left(M+\frac{\frac{d f}{d x}}{\Phi^{a-1}}\right) d x\left(N+\frac{\frac{d g}{d y}}{\Phi^{a-1}}\right) d y\right)
$$

In other words, $q=\Phi^{a-1}$ is an integration factor for the differential

$$
\left(M+\frac{\frac{d f}{d x}}{\Phi^{a-1}}\right) d x\left(N+\frac{\frac{d g}{d y}}{\Phi^{a-1}}\right) d y
$$

This idea will be applied in two special cases below.

Equations like $y d x+x d y=p x^{r} y^{s} d x$
In this case, we take $\Phi(x, y)=x y$ so that $d \Phi=y d x+x d y$. We now need to choose a suitable f so that

$$
\frac{\frac{d f}{d x}}{x y^{a-1}}=-p x^{r} y^{s}
$$

Equivalently, we have

$$
\frac{d f}{d x}=-p x^{r+a-1} y^{s+a-1}
$$

It follows that we need $a=-s+1$, and we can take $f(x)=\frac{-p}{r+a} x^{r+a}$. In other words, we take the factor of integration as $(x y)^{-s}$. The equation then becomes

$$
x^{-s} y^{-s+1} d x+x^{-s+1} y^{-s} d y=p x^{r-s} d x
$$

It is simple (assuming $s \neq 1$ and $r-s \neq-1$) to see this as

$$
\frac{1}{s-1} d\left(x^{1-s} y^{1-s}\right)=\frac{p}{r+1-s} d\left(x^{r+1-s}\right)
$$

In other words, we have

$$
\Phi(x, y)=\frac{1}{s-1}(x y)^{1-s}-\frac{p}{r+1-s} x^{r+1-s}
$$

A similar argument can be used for the cases when $s=1$ or $r-s=-1$. Also note that we can interchange x and y to solve $y d x+x d y=p x^{r} y^{s} d y$ in a similar way.

Equations like $y d x-x d y=p x^{r} y^{s} d x$
In this case, we take $\Phi(x, y)=x / y$ so that $d \Phi=(y d x-x d y) / y^{2}$. We now need to choose a suitable f so that

$$
\frac{\frac{d f}{d x}}{x^{a-1} y^{-1-a}}=-p x^{r} y^{s}
$$

Equivalently, we have

$$
\frac{d f}{d x}=-p x^{r+a-1} y^{s-1-a}
$$

It follows that we need $a=s-1$, and we can take $f(x)=\frac{-p}{r+a} x^{r+a}$. In other words, we take the factor of integration as x^{a-1} / y^{a+1}. The equation then becomes

$$
\frac{x^{s-2}}{y^{s-1}} d x-\frac{x^{s-1}}{y^{s}} d y=p x^{r+s-2} d x
$$

It is simple (assuming that $s \neq 1$ and $r+s \neq-1$) to see this as

$$
\frac{1}{s-1} d\left(\frac{x^{s-1}}{y^{s-1}}\right)=\frac{p}{r+s-1} d\left(x^{r+s-1}\right)
$$

In other words, we have

$$
\Phi(x, y)=\frac{1}{s-1} \frac{x^{s-1}}{y^{s-1}}-\frac{p}{r+s-1} x^{r+s-1}
$$

A similar argument can be used for the cases when $s=1$ or $r+s=2$. Also note, as before, that we can interchange the roles of x and y to solve $y d x-x d y=p x^{r} y^{s} d y$ in a similar way.

