Differential Equations for Scientists

Kapil Hari Paranjape

Some examples of integral curves

Given a family $\Phi(x, y)=c$ of curves, one of the problems that quickly reduces to the problem of finding integral curves is that of finding the orthogonal family of curves. The given family of curves has the tangent $(\partial \Phi / \partial y,-\partial \Phi / \partial x)$ as the point (x, y). The orthogonal curves have tangents parallel to $(\partial \Phi / \partial x, \partial \Phi / \partial y)$. Equivalently, the differential of Φ is $(\partial \Phi / \partial x) d x+(\partial \Phi / \partial y) d y$. To find the orthogonal curves we need to solve the differential $(\partial \Phi / \partial y) d x-(\partial \Phi / \partial x) d y$.
In this set of solved examples we carry out such computations.

Circles

One of the simplest examples of solving for the integral curve associated with a differential is given by $x d x+y d y$. In this case we see that the flow takes the form

$$
\begin{aligned}
& \frac{d x}{d t}=-y \\
& \frac{d y}{d t}=x
\end{aligned}
$$

The corresponding flow through (a, b) is given by

$$
(x(t), y(t))=(a \cos t+b \sin t,-a \sin t+b \cos t)
$$

We see that this satisfies the equation $x^{2}+y^{2}=a^{2}+b^{2}$. Hence, the flow curves are given by $\Phi(x, y)=c$ where $\Phi(x, y)=x^{2}+y^{2}$. We could have also directly noticed that

$$
\begin{aligned}
& \frac{\partial \Psi}{\partial x}=x \\
& \frac{\partial \Psi}{\partial y}=y
\end{aligned}
$$

has the solution $\Psi(x, y)=\left(x^{2}+y^{2}\right) / 2$.

By the theory worked out earlier, this tells us that, for any differential of the form $\$ \mathrm{rxdx}+\mathrm{r}$ y dy $\$$ (with an arbitrary well-behaved function r), the function $\Phi(x, y)=x^{2}+y^{2}$ solves the problem under consideration. In particular, we can solve the differentials $d x+(y / x) d y$ or $x^{2} y d x+x y^{2} d y$ by using the "integrating factors" x and $1 /(x y)$ respectively.

Obviously, not all problems are so simple!

Ellipses

To illustrate the method, let us consider the problem of solving the differential $a x d x+b y d y$, in other words $(M, N)=(a x, b y)$. We see that $(\partial N / \partial x)-$ $(\partial M / \partial y)=0$. So this is an "exact" differential. We then note that

$$
\Phi(x, y)-\Phi(0, y)=\int_{0}^{x} M d x=a x^{2} / 2
$$

Next, we note that

$$
\frac{d \Phi(0, y)}{d y}=b y-\frac{\partial}{\partial y}\left(a x^{2} / 2\right)=b y
$$

It follows that $\Phi(0, y)=b y^{2} / 2+c$ for some constant c. This gives us $\Phi(x, y)=$ $c+a x^{2} / 2+b y^{2} / 2$ as can also be found by "inspection".
Let us again note that the apparently more complicated looking differential $\$(a / y) d x+(b / x) d y \$$ can also be solved with the same function using the integration factor $q=x y$ as we see by inspection.

Orthogonal curves

We now consider the problem of finding curves that are everywhere orthogonal to the ellipses $a x^{2}+b y^{2}=c$. This is the problem of finding the curves whose tangents are parallel to $(2 a x, 2 b y)$ at (x, y). In other words, we want to solve the differential $b y d x-a x d y$, so we put $(M, N)=(b y,-a x)$.

We now check that $(\partial N / \partial x)-(\partial M / \partial y)=(a+b)$. So this is not exact when $a+b=\neq 0$.

When $a+b=0$, we see easily that $\Phi(x, y)=b x y+c$ solve the problem.
So, let us consider the case $a+b \neq 0$. In this case, we note that

$$
\frac{(\partial N / \partial x)-(\partial M / \partial y)}{N}=\frac{a+b}{-a x}
$$

is a function of x alone. So we put

$$
q(x)=\exp \left(\int \frac{-b-a}{a x} d x\right)=x^{-b / a-1}
$$

as the integrating factor. We note that

$$
\frac{\partial}{\partial x}\left(x^{-b / a-1} N\right)=\frac{d}{d x}\left(-a x^{-b / a}\right)=b x^{-b / a-1}
$$

Moreover,

$$
\frac{\partial}{\partial y}\left(x^{-b / a-1} M\right)=\frac{\partial}{\partial y}\left(b x^{-b / a-1} y\right)=b x^{-b / a-1}
$$

So the differential $q M d x+q N d y$ is closed. In fact, by inspection it is not difficult to check that $\Phi(x, y)=-a x^{-b / a} y$ satisfies

$$
\begin{array}{ll}
\frac{\partial \Phi}{\partial x}=q M & =b x^{-b / a-1} y \\
\frac{\partial \Phi}{\partial y}=q N & =-a x^{-b / a}
\end{array}
$$

Now the family of curves $\Phi(x, y)=c$ is the same as the family of curves $y^{a}=C x^{b}$, and so it is more traditional to write the curves this way. We can also check that if $\Psi(x, y)=x^{-b} y^{a}$, then

$$
\begin{aligned}
& \frac{\partial \Psi}{\partial x}=r M \\
& \frac{\partial \Phi}{\partial y}=r N
\end{aligned}
$$

for a suitable function r when $(M, N)=(b y,-a x)$.
As a final note, we did not seriously use the signs of a and b, so the same analysis also works for hyperbolas!

