## Solutions to the Questions

1. What is $\exp (t A)$ for each of the following matrices.
(2 marks)
(2 marks)
(a) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right)$

Solution: This is a diagonal matrix, so $\left(\begin{array}{ccc}e^{t} & 0 & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & e^{2 t}\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & -1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)$

Solution: This is a nilpotent matrix $\left(A^{3}=0\right)$, so it is $\mathbf{1}_{2}+t A+t^{2} A^{2} / 2$. $\left(\begin{array}{ccc}1 & -t & t-t^{2} \\ 0 & 1 & 2 t \\ 0 & 0 & 1\end{array}\right)$
(2 marks)
(c) $\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$

Solution: This matrix is of the form $a \mathbf{1}_{2}+b I$ so it is $e^{t} R(t)=\left(\begin{array}{cc}e^{t} \cos t & -e^{t} \sin t \\ e^{t} \sin t & e^{t} \cos t\end{array}\right)$
2. Solve the following Linear ODE Initial value problem in the steps given below.

$$
\begin{aligned}
& \frac{d x}{d t}=-2 x+y+t \\
& \frac{d y}{d t}=-4 x+2 y
\end{aligned}
$$

with $x(0)=0$ and $y(0)=1$.
(2 marks) (a) Write the equation in the form

$$
\frac{d \vec{v}}{d t}=A \cdot \vec{v}+\vec{w} \text { and } \vec{v}(0)=\overrightarrow{v_{0}}
$$

where $\vec{v}=\binom{x}{y}$ and $A$ is a $2 \times 2$ matrix. What are $A, \vec{w}$ and $\overrightarrow{v_{0}}$ ?

## Solution:

$$
A=\left(\begin{array}{ll}
-2 & 1 \\
-4 & 2
\end{array}\right) ; \vec{w}=\binom{t}{0} ; \overrightarrow{v_{0}}=\binom{0}{1}
$$

(2 marks) (b) Find a matrix-valued function $G(t)$ so that

$$
\frac{d G}{d t}=A \cdot G \text { and } G(0)=\mathbf{1}_{2}
$$

Solution: We just need to write $\exp (t A)$ since $A$ has constant coefficients. Moreover $A^{2}=0$ so it is

$$
G=\mathbf{1}_{2}+t A=\left(\begin{array}{cc}
1-2 t & t \\
-4 t & 1+2 t
\end{array}\right)
$$

(2 marks) (c) Find a vector-valued function $\vec{u}(t)$, so that $\vec{v}=G \cdot \vec{u}$ is a solution of the above initial value problem.

Solution: We need to satisfy the equations

$$
G \cdot \frac{d \vec{u}}{d t}=\vec{w} \operatorname{and} \vec{u}(0)=\overrightarrow{v_{0}}
$$

So the solution is

$$
\vec{u}=\overrightarrow{v_{0}}+\int_{0}^{t} G(t)^{-1} \vec{w} d t
$$

Using

$$
G^{-1}=\left(\begin{array}{cc}
1+2 t & -t \\
4 t & 1-2 t
\end{array}\right)
$$

we see that

$$
\vec{u}=\binom{t^{2} / 2+2 t^{3} / 3}{1+4 t^{3} / 3}
$$

3. Answer each of the following questions and provide a reason.
(1 mark) (a) Are $(\cos (t), \sin (t))$ and $(t, 1-t)$ two solutions of the same differential equation

$$
\frac{d \vec{v}}{d t}=\vec{f}(\vec{v})
$$

for 2-dimensional vector-valued functions $\vec{v}$ and $\vec{f}$ for different initial conditions?

Solution: The first solution passes through $(1,0)$ at $t=0$ and the second solution passes through the same point $t=1$. However, these solutions are different around these values of $t$. This contradicts the unique-ness of the solution. (The question should have mentioned that $\vec{f}$ is continuous and $\vec{v}$ is differentiable!)
(1 mark) (b) Is $(\cos t, t \sin t)$ a possible solution for a differential equation of the form

$$
\frac{d \vec{v}}{d t}=A \cdot \vec{v}
$$

where $\vec{v}$ is a 2 -dimensional vector and

$$
A=\left(\begin{array}{cc}
0 & -f(t) \\
f(t) & 0
\end{array}\right)
$$

for some suitable function $f(t)$ ?
Solution: The vector $(\cos t, t \sin t)$ changes in length with $t$. This is not possible since $A$ is a skew-symmetric matrix so the flow preserves lengths and angles. (The question should have mentioned that $f$ is continuous.)
(1 mark)
(c) Is $G(t)=\left(\begin{array}{cc}t & t^{2}+1 \\ -1 & 1\end{array}\right)$ a matrix solution of a differential equation of the form

$$
\frac{d \vec{v}}{d t}=A \cdot \vec{v}
$$

where $\vec{v}$ is a 2 -dimensional vector and

$$
A=\left(\begin{array}{cc}
h(t) & f(t) \\
g(t) & -h(t)
\end{array}\right)
$$

for some suitable functions $f(t), g(t)$ and $h(t)$ ?
Solution: Since the matrix $A$ has trace 0 , the matrix $G$ must have constant determinant. However, the given matrix $G$ has determinant $t+t^{2}+1$ which varies with $t$. (The question should have mentioned that $f, g$ and $h$ are continuous.)

