Solutions to Quiz 3

(5 marks) 1. Find the solution of the differential equation

$$
\begin{aligned}
& \frac{d x}{d t}=x-t y+1 \\
& \frac{d y}{d t}=y
\end{aligned}
$$

with initial condition $(x(0), y(0))=(0,1)$

Solution: We note that the equation has the matrix form

$$
\frac{d \vec{v}}{d t}=\left(\begin{array}{cc}
1 & -t \\
0 & 1
\end{array}\right) \cdot \vec{v}+\vec{w}
$$

where $\vec{v}=\binom{x}{y}$ and $\vec{w}=\binom{1}{0} \cdot(1$ mark for this step.)
We note that the matrix function $A(t)=\left(\begin{array}{cc}1 & -t \\ 0 & 1\end{array}\right)$ has the property that $A(t)$ commutes with $A\left(t^{\prime}\right)$ for all t and t^{\prime}. It follows that the general solution of the homogeneos equation is given by

$$
\vec{v}=\exp \left(\int_{0}^{t} A(t) d t\right) \cdot \overrightarrow{v_{0}}=B(t) \cdot \overrightarrow{v_{0}}
$$

(1 mark for this step.) We calculate

$$
B(t)=\exp \left(\left(\begin{array}{cc}
t & -t^{2} / 2 \\
0 & t
\end{array}\right)\right)=\exp \left(t \mathbf{1}_{2}+\left(\begin{array}{cc}
0 & -t^{2} / 2 \\
0 & 0
\end{array}\right)\right)=\exp (t)\left(\begin{array}{cc}
1 & -t^{2} / 2 \\
0 & 1
\end{array}\right)
$$

(1 Mark for this step.)
Using variation of parameters method, we see that the solution to the homogeneous equation is given by

$$
\vec{v}=B(t) \cdot \vec{u}
$$

where

$$
\vec{u}=\overrightarrow{v_{0}}+\int_{0}^{t}\left(B(t)^{-1} \vec{w}\right) d t
$$

(1 Mark for this step.)
We calculate using the given initial vector $\overrightarrow{v_{0}}$ and \vec{w} as above

$$
\vec{u}=\binom{0}{1}+\int_{0}^{t} B(t)^{-1} \cdot\binom{1}{0} d t=\binom{0}{1}+\int_{0}^{t}\binom{\exp (-t)}{0} d t=\binom{1-\exp (-t)}{1}
$$

(1 mark for this part.)
Thus, the final solution is

$$
\vec{v}=\binom{e^{t}-1-\left(t^{2} / 2\right) e^{t}}{e^{t}}
$$

