General Linear ODE

1. Solve the following ordinary differential equation

$$
\frac{d \vec{v}}{d t}=A \cdot \vec{v}+\vec{f}(t) \text { and } \vec{v}(0)=\binom{1}{-1}
$$

for each of the following choices of A and f.
(a) $A=\left(\begin{array}{cc}1 & -1 \\ 1 & -1\end{array}\right)$ and $\vec{f}(t)=\binom{\cos 2 t}{\sin (t / 2)}$.
(b) $A=\left(\begin{array}{cc}t & 0 \\ 0 & -t\end{array}\right)$ and $\vec{f}(t)=0$.
(c) $A=\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ and $\vec{f}(t)=\binom{\exp (t)}{t}$.
(d) $A=\left(\begin{array}{cc}t^{2} & -t \\ t & t^{2}\end{array}\right)$ and $\vec{f}(t)=\binom{1}{1}$.
2. Given the linear ODE

$$
\frac{d \vec{v}}{d t}=A(t) \cdot \vec{v}
$$

where $A(t)$ is given as below. Assume that $\overrightarrow{v_{1}}$ is the solution with initial value $\binom{1}{0}$, and $\overrightarrow{v_{2}}$ is the solution with initial value $\binom{0}{1}$. (Note: To solve the following exercises, you do not need to solve the equations!)
(a)

$$
\left(\begin{array}{cc}
0 & \cos t \\
-\cos t & 0
\end{array}\right)
$$

What can you say about the lengths of the two vectors a function of t ?
(b)

$$
\left(\begin{array}{cc}
t & \cos t \\
-\cos t & t
\end{array}\right)
$$

What can you say about the angle between the two vectors a function of t ?
(c)

$$
\left(\begin{array}{cc}
1 & t \\
-t & t^{2}
\end{array}\right)
$$

What can you say about the length of the cross-product of the two vectors as a function of t ?

