Existence of Solutions

(To simplify reading, these notes will use boldface symbols for vectors.)
One way to determine a solution is to determine its properties and use it to isolate the solution. So let us assume that $\mathbf{v}(t)$ is a solution of the initial value problem

$$
\frac{d \mathbf{v}}{d t}=\mathbf{f}(\mathbf{v}) \text { and } \mathbf{v}\left(t_{0}\right)=\mathbf{v}_{0}
$$

By the fundamental theorem of calculus (applied entry-by-entry to \mathbf{v}), we get

$$
\mathbf{v}(t)-\mathbf{v}\left(t_{0}\right)=\int_{t_{0}}^{t} \frac{d \mathbf{v}}{d t} d t=\int_{t_{0}}^{t} \mathbf{f}(\mathbf{v}) d t
$$

This can be written as

$$
\mathbf{v}(t)=\mathbf{v}_{0}+\int_{t_{0}}^{t} \mathbf{f}(\mathbf{v}) d t
$$

which looks like a formula for \mathbf{v} except that the right-hand side also depends on v !

Instead, we can think of this as a map from vector-valued functions of t to vector-valued functions of t given by

$$
\mathbf{w} \mapsto \Phi(\mathbf{w})=\mathbf{u} \text { where } \mathbf{u}(t)=\mathbf{w}_{0}+\int_{t_{0}}^{t} \mathbf{f}(\mathbf{w}) d t
$$

In that case, we can think of the solution of the ODE as a fixed point of this map since the previous identity is recast as $\mathbf{v}=\Phi(\mathbf{v})$. (Recasting an equation as a fixed point problem is a very useful technique.)
We can start with a suitably chosen vector-valued function $\mathbf{v}^{(1)}$, and define $\mathbf{v}^{(k+1)}=\Phi\left(\mathbf{v}^{(k)}\right)$. If we are lucky(!), this sequence $\mathbf{v}^{(k)}$ will converge to vectorvalued function \mathbf{v}. Assuming that Φ is continuous in a suitable sense we will have the limiting identity

$$
\mathbf{v}=\lim _{k \rightarrow \infty} \mathbf{v}^{(k+1)}=\lim _{k \rightarrow \infty} \Phi\left(\mathbf{v}^{(k)}\right)=\Phi\left(\lim _{k \rightarrow \infty} \mathbf{v}^{(k)}\right)=\Phi(\mathbf{v})
$$

which is the equation we want.
For this approach to work, we need the condition that if $\mathbf{v}-\mathbf{w}$ is small then $\Phi(\mathbf{v})-\Phi(\mathbf{w})$ should be small too. In our case, this second expression simplifies to

$$
\int_{t_{0}}^{t}(\mathbf{f}(\mathbf{v})-\mathbf{f}(\mathbf{w})) d t
$$

Now, we only want the solution in a fixed time interval $\left(t_{0}-T, t_{0}+T\right)$, so this integral is at most $2 T$ times $\mathbf{f}(\mathbf{v})-\mathbf{f}(\mathbf{w})$. So the simplest condition we can ask for, is that there is a constant M so that

$$
\|\mathbf{f}(\mathbf{v})-\mathbf{f}(\mathbf{w})\| \leq M\|\mathbf{v}-\mathbf{w}\|
$$

where $\|\cdot\|$ denotes the length of the vector. This is called a Lipschitz condition on the function \mathbf{f} in memory of the mathematician Rudolf Lipschitz.

In summary, suppose we want to solve the differential equation

$$
\frac{d \mathbf{v}}{d t}=\mathbf{f}(\mathbf{v}) \text { and } \mathbf{v}\left(t_{0}\right)=\mathbf{v}_{0}
$$

Further assume that there is a $B>0$ so that, for all \mathbf{v} and \mathbf{w} which are at a distance of at most B from \mathbf{v}_{0}, the Lipschitz condition

$$
\|\mathbf{f}(\mathbf{v})-\mathbf{f}(\mathbf{w})\| \leq M\|\mathbf{v}-\mathbf{w}\|
$$

is satisfied for a suitable positive constant M. We now pick T so that $2 T / M<$ $\min \{B, 1\} / 2$ and define:

1. $\mathbf{v}^{(1)}(t)=\mathbf{v}_{0}$ for all t.
2. $\mathbf{v}^{(k+1)}=\Phi\left(\mathbf{v}^{(k)}\right)$.

Then, one can show, by the usual methods of analysis that $\mathbf{v}^{(k)}$ converges, for all t in $\left(t_{0}-T, t_{0}+T\right)$, to a vector-valued differentiable function \mathbf{v} which satisfies the differential equation. In fact, we can replace $\mathbf{v}^{(1)}$ by any continuous vector-valued function in $\left(t_{0}-T, t_{0}+T\right)$ which has value \mathbf{v}_{0} at t_{0} and has values within a distance of B from this vector. This second assertion shows that the solution is unique.

We can also vary the initial vector \mathbf{v}_{0} and show that the solution varies continuously as we do so. This gives us the Picard-Lindelöf theorem.

