General linear ordinary differential equation

A linear ordinary differential equation has the form $(d \vec{v} / d t)=A \cdot \vec{v}$ where A is an $n \times n$ matrix and \vec{v} is an column n-vector, where A is independent of \vec{v}. So far we have studied the case where A does not vary with t. We now want to study the more general case where $A=A(t)$ may vary with t.

Before we begin, here is a clarificatory remark. In the introduction to this course, we had pointed out that a "time-dependent" equation $(d \vec{v} / d t)=\vec{f}(t, \vec{v})$ can be converted into a time-independent one by introducing \vec{w} as a column vector with $(n+1)$ entries; the first n entries are the same as \vec{v} and the last entry is t. On the right hand side we can then substitute w_{n+1} in place of t to write $(d \vec{w} / d t)=\vec{g}(\vec{w})$ where the first n entries of \vec{g} are $f\left(w_{n+1}, \vec{w}\right)$ and the last entry is $1\left(=\left(d w_{n+1} / d t\right)\right)$. If we attempt to use this in the above case, we see that the new matrix A becomes dependent on w_{n+1} and hence the equation is no longer linear.

To summarise, it is important that A remains independent of \vec{v} for us to call it a linear equation. However, we can allow A to depend on t as we will now do.

Linearity of the solution

As a consequence of the general statement of existence and uniqueness of solutions of ordinary differential equation, we will see that under some very mild hypothesis on A (such as continuity), there is a unique function $\vec{v}(t)$ which satisfies

$$
\frac{d \vec{v}}{d t}=A(t) \cdot \vec{v} \text { and } \vec{v}(0)=\overrightarrow{v_{0}}
$$

for any given initial vector $\overrightarrow{v_{0}}$. This solution exists for small enough interval around 0 (for t) which is independent of the chosen $\overrightarrow{v_{0}}$.

In fact, if we start at a different initial time t_{0} and put the condition $\vec{v}\left(t_{0}\right)=\overrightarrow{v_{0}}$ instead of the above initial condition, then there is a unique solution $\vec{v}(t)$ for a small enough interval around t_{0}.

Let $\overrightarrow{u_{0}}=a \overrightarrow{v_{0}}+\overrightarrow{w_{0}}$ for some constant a and some chosen fixed vectors $\overrightarrow{v_{0}}$ and $\overrightarrow{w_{0}}$. We use the notation \vec{u} to denote the solution of

$$
\frac{d \vec{u}}{d t}=A(t) \cdot \vec{u} \text { and } \vec{u}(0)=\overrightarrow{u_{0}}
$$

and we use the notation \vec{w} to denote the solution of

$$
\frac{d \vec{w}}{d t}=A(t) \cdot \vec{w} \text { and } \vec{w}(0)=\overrightarrow{w_{0}}
$$

Consider the vector valued function $\overrightarrow{u^{\prime}}=a \vec{v}+\vec{w}$. We note that

$$
\overrightarrow{u^{\prime}}(0)=a \vec{v}(0)+\vec{w}(0)=a \overrightarrow{v_{0}}+\overrightarrow{w_{0}}=\overrightarrow{u_{0}}
$$

Moreover, since a is a constant

$$
\frac{d \overrightarrow{u^{\prime}}}{d t}=a \frac{d \vec{v}}{d t}+\frac{d \vec{w}}{d t}=a A(t) \cdot \vec{v}+A(t) \cdot \vec{w}
$$

Now, matrix multiplication commutes with scalar multiplication (by a) and preserves addition. So

$$
a A(t) \cdot \vec{v}+A(t) \cdot \vec{w}=A(t) \cdot a \vec{v}+A(t) \cdot \vec{w}=A(t) \cdot(a \vec{v}+\cdot \vec{w})=A \overrightarrow{u^{\prime}}
$$

In other words, we see that $\overrightarrow{u^{\prime}}$ also satisfies

$$
\frac{d \overrightarrow{u^{\prime}}}{d t}=A(t) \cdot \overrightarrow{u^{\prime}} \text { and } \overrightarrow{u^{\prime}}(0)=\overrightarrow{u_{0}}
$$

By the uniqueness of the solution, we see that $\overrightarrow{u^{\prime}}=\vec{u}$.
We have shown the following. If \vec{v} is the solution of the Linear ODE with initial value $\overrightarrow{v_{0}}$ and \vec{w} is the solution of the same Linear ODE with (the other) initial value $\overrightarrow{w_{0}}$, then $a \vec{v}+\vec{w}$ is the solution of the same Linear ODE with the combined initial value $a \overrightarrow{v_{0}}+\overrightarrow{w_{0}}$.
Before proceeding further, let us see how linearity is important. Consider a general ODE $(d \vec{v} / d t)=\vec{f}(t, \vec{v})$ and let \vec{v} be a solution of this with initial value $\overrightarrow{v_{0}}$ and \vec{w} be a solution of this with initial value $\overrightarrow{w_{0}}$. We can form $\overrightarrow{u^{\prime}}=a \vec{v}+\vec{w}$ as we did above. What does it satisfy? It is clear that, as above, we have

$$
\overrightarrow{u^{\prime}}(0)=a \vec{v}(0)+\vec{w}(0)=a \overrightarrow{v_{0}}+\overrightarrow{w_{0}}
$$

However, when we examine the derivative we see

$$
\frac{d \overrightarrow{u^{\prime}}}{d t}=a \frac{d \vec{v}}{d t}+\frac{d \vec{w}}{d t}=a \vec{f}(t, \cdot \vec{v})+\vec{f}(t, \cdot \vec{w})
$$

The expression on the right-hand side does not, in general, simplify to $f(t, a \vec{v}+\vec{w})$ since we do not know that $\vec{f}(t, \vec{v})$ is linear with respect to the second (vectorial) argument \vec{v}. Thus, we appear to have a solution of an entirely different ordinary differential equation (if at all!).

Linear independence

Given that $\overrightarrow{v_{i}}(t)$, for $i=1, \ldots, k$ are solutions of the linear ordinary differential equation $(d \vec{v} / d t)=A \cdot \vec{v}$. Further, let us assume that $\overrightarrow{v_{1}}(0), \overrightarrow{v_{2}}(0), \ldots, \overrightarrow{v_{k}}(0)$ are linearly independent. We now claim that, for every t, the vectors $\overrightarrow{v_{1}}(t), \overrightarrow{v_{2}}(t), \ldots, \overrightarrow{v_{k}}(t)$ are linearly independent. Suppose that $a_{1}, a_{2}, \ldots, a_{k}$ are constants so that

$$
a_{1} \overrightarrow{v_{1}}\left(t_{0}\right)+a_{2} \overrightarrow{v_{2}}\left(t_{0}\right)+\cdots+a_{k} \overrightarrow{v_{k}}\left(t_{0}\right)=0 \text { for some } t_{0}
$$

By uniqueness of the solution with initial time t_{0}, it follows that

$$
a_{1} \overrightarrow{v_{1}}(t)+a_{2} \overrightarrow{v_{2}}(t)+\cdots+a_{k} \overrightarrow{v_{k}}(t)=0 \text { for all } t
$$

In particular, it follows that

$$
a_{1} \overrightarrow{v_{1}}(0)+a_{2} \overrightarrow{v_{2}}(0)+\cdots+a_{k} \overrightarrow{v_{k}}(0)=0
$$

However, these vectors are given to be linearly independent and so we conclude that $a_{i}=0$ for $i=1, \ldots, k$ as required.

This has a practical consequence. For each i from 1 to n, we let $\overrightarrow{v_{i}}$ denote the solution of the Linear ODE as above with the initial condition $\overrightarrow{v_{i}}(0)=\overrightarrow{e_{i}}$ where

$$
\overrightarrow{e_{i}}=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)
$$

is the standard basis vector of \mathbb{R}^{n} with 1 in the i-th row and 0 everywhere else. We now define the matrix $G=\left[v_{1}, \ldots, v_{n}\right]$ whose columns are $\overrightarrow{v_{i}}$; this is a matrix valued function of t. Then, the solution of the initial value problem with initial condition $\vec{v}(0)=\overrightarrow{v_{0}}$ is given by $\vec{v}=G \cdot \overrightarrow{v_{0}}$.

In other words, G plays the same role as $\exp (t A) \operatorname{did}$ in the case when A has constant coefficients!

Another way to look at this is to say that we only need to find n solutions to the Linear ODE, corresponding to the initial positions $\overrightarrow{e_{i}}$. All other solutions are obtained as linear combinations of these solutions.

Determinant

Given an $n \times n$ matrix G, recall that its determinant is defined inductively as

$$
\operatorname{det}(G)=G_{1,1} \operatorname{det} H(1,1)-G_{1,2} \operatorname{det} H(1,2)+\cdots+(-1)^{n} G_{1, n} \operatorname{det} H(1, n)
$$

where $G_{i, j}$ is the (i, j)-th entry of G and $H(i, j)$ is the $(n-1) \times(n-1)$ matrix obtained from G by deleting the i-th row and j-th column. By an application of Leibniz rule and induction we can show that

$$
\frac{d \operatorname{det}(G)}{d t}=\operatorname{det} G^{(1)}+\operatorname{det} G^{(2)}+\cdots+\operatorname{det} G^{(n)}
$$

where $G^{(k)}$ is the matrix obtained from G by differentiating the k-th column of G.

Now, let us assume that G is the matrix solution to a linear ODE as constructed above. Then each column $\overrightarrow{v_{i}}$ of G satisfies $\left(d \overrightarrow{v_{i}} / d t\right)=A \cdot \overrightarrow{v_{i}}$. So the right-hand side in the above expression becomes

$$
\operatorname{det}\left[A \cdot \overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right]+\operatorname{det}\left[\overrightarrow{v_{1}}, A \cdot \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right]+\operatorname{det}\left[\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, A \cdot \overrightarrow{v_{n}}\right]
$$

An elementary but instructive exercise can be used to show that this expression is $\operatorname{Tr}(A) \operatorname{det}(G)$ where $\operatorname{Tr}(A)$ denotes the trace of the matrix A. In other words, we have obtained the identity

$$
\frac{d \operatorname{det}(G)}{d t}=\operatorname{Tr}(A) \operatorname{det}(G)
$$

So, $\operatorname{det}(G)$ satisfies this ordinary differential equation. As we saw in the introduction, the solution of this differential equation is

$$
\operatorname{det}(G)=\exp \left(\int_{0}^{t} \operatorname{Tr}(A)(t) d t\right)
$$

where we have used $\operatorname{det}(G)(0)=1$ since we started with the standard basis at $t=0$.

We note, in particular, that if the trace of A is identically 0 , then $\operatorname{det}(G)$ is identically 1 ; in other words, the flow is "volume preserving".

There are other examples of polynomial identities that can be deduced for G based on certain linear properties of A. This is the starting point of the theory of Lie Algebras. We only mention one important property. If A is a skewsymmetric matrix, then G is orthogonal, i.e. $G \cdot G^{t}=\mathbf{1}_{n}$. In other words, if A is skew-symmetric then the flow preserves lengths and angles.

Wronskian

A particular case of the above analysis is when we solve a linear equation of order n with one indeterminate:

$$
\frac{d^{n} x}{d t^{n}}+a_{1}(t) \frac{d^{n-1} x}{d t^{n-1}}+\cdots++a_{n-1}(t) \frac{d x}{d t}+a_{n} x=0
$$

As mentioned in the introduction, we can introduce new variables $x_{1}=x$, $x_{2}=(d x / d t)$, and so on till $x_{n}=\left(d^{n-1} x / d t^{n-1}\right)$. This equation becomes

$$
\frac{d}{d t}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-a_{n} & -a_{n-1} & -a_{n-3} & \ldots & -a_{1}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)
$$

It is clear that the trace of the matrix is $-a_{1}$ in this case. Suppose that $x_{i}(t)$ denotes the solution with initial condition

$$
\left.\frac{d^{k} x_{i}}{d t^{k}}\right|_{t=0}= \begin{cases}0 & k \neq i \\ 1 & k=i\end{cases}
$$

for $k=0, \ldots,(N-1)$. Then the Wronskian is defined as

$$
W(t)=\operatorname{det}\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
\frac{d x_{1}}{d t} & \frac{d x_{2}}{d t} & \ldots & \frac{d x_{n}}{d t} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{d^{n-1} x_{1}}{d t^{n-1}} & \frac{d^{n-1} x_{2}}{d t^{n-1}} & \ldots & \frac{d^{n-1} x_{n}}{d t^{n-1}}
\end{array}\right)
$$

This is non-zero for all t and is given by $W(t)=\exp \left(\int-a_{1}(t) d t\right)$. In fact, one can show that for any collection of functions $x_{1}, x_{1}, \ldots, x_{n}$ which are linearly independent, the Wronskian as defined above is non-zero.

