Solutions to Quiz 2

(5 marks) 1. Give the general solution of the differential equation

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+y \\
& \frac{d y}{d t}=y
\end{aligned}
$$

by the method using eigenvectors of a suitable matrix.

Solution: We see that the equation is

$$
\frac{d}{d t}\binom{x}{y}=A \cdot\binom{x}{y}
$$

where the matrix A is $\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$. This has characteristic polynomial $(T-2)(T-1)=0$ which has the solutions $T=2$ and $T=1$. (1 Mark for this step.)
We find the eigenvectors of this by writing

$$
2 \mathbf{1}_{2}-A=\left(\begin{array}{ll}
0 & -1 \\
0 & -1
\end{array}\right)
$$

By inspection we see that $\binom{1}{0}$ is sent to 0 by this matrix. Similarly, by writing

$$
\mathbf{1}_{2}-A=\left(\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right)
$$

we see that $\binom{1}{-1}$ is sent to 0 by this matrix. Thus, if we put

$$
G=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)
$$

Then we have $A \cdot G=G \cdot D$ where D is the diagonal matrix with entries 2 and 1 . (1 Mark for each eigenvector or 2 marks for matrix G.)
Putting $\binom{u}{v}=G^{-1} \cdot\binom{x}{y}$ we see that

$$
\begin{aligned}
& \frac{d u}{d t}=2 u \\
& \frac{d v}{d t}=v
\end{aligned}
$$

These have the solutions $u=a e^{2 t}$ and $v=b e^{t}$. (1 Mark for this step.) It follows that

$$
\binom{x}{y}=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right) \cdot\binom{u}{v}=\binom{a e^{2 t}+b e^{t}}{-b e^{t}}
$$

(1 Mark for this final solution.)
(4 marks for obtain the correct solution without reducing to the separate diagonal form.)

