
Exponential flows

The solutions of ordinary differential equations can be seen as “flows” or 1-
parameter groups. We now study the simplest such groups and the homogeneous
linear ordinary differential equations with constant coefficients that these solve.

The simplest 1-parameter groups

Scaling and shrinking

A one-parameter group is a map f : R → G, where G is a group which we
write multiplicatively. In other words, it “turns” addition into multiplication.
The simplest such map that we know is “taking the power of”. This is more
mathematically defined using the exponential function:

exp(t) = 1 + t+ t2

2! + · · · =
∞∑

k=0

tk

k!

The fundamental identity exp(a+b) = exp(a)·exp(b) can be obtained by checking
it “term by term” where it becomes,

(a+ b)n

k! =
k∑

r=0

ar

r! ·
bk−r

(k − r)!

which is just another way to write the Binomial theorem! Note that this checking
term-by-term is valid since the above series is abosolutely convergent. Thus
we see that exp converts addition into multiplication. More generally, for any
constant c we have exp((t+ s)c) = exp(tc) · exp(sc). In particular, we can take
c = log(2) in which case exp(c) = 2 so that we can think of this as 2t+s = 2t · 2s.

Rotation

Another “standard” 1-parameter group is given by rotations in the plane. Clearly
rotation by an angle t followed by a rotation by a rotation by the angle s is
the same as rotation by the angle t + s. Rotation by the angle t is the linear
transformation associated the matrix:(

cos t − sin t
sin t cos t

)
Thus, the required identity is:(

cos(t+ s) − sin(t+ s)
sin(t+ s) cos(t+ s)

)
=
(

cos t − sin t
sin t cos t

)
·
(

cos s − sin s
sin s cos s

)
This identity is just a re-statement of the “law of addition for sine and cosine”.

1



Shearing

Yet another simple matrix identity is(
1 (t+ s)
0 1

)
=
(

1 t
0 1

)
·
(

1 s
0 1

)
This corresponds to the flow in the plane given by (x, y) 7→ (x+ yt, y) which is
called a “shearing”; each point moves to the right an amount proportional to its
height above the x-axis.

Exponential

As seen above, the exponential function exp : R→ R>0 is given in terms of the
power series

exp(x) =
∞∑

k=0

xk

k!

What this means is that if we define the polynomial functions

eN (x) =
N∑

k=0

xk

k!

Then, for every x, the sequence of real numbers eN (x) converges to a real number
exp(x). In fact, for each positive real number x, the sequence of numbers eN (x)
is increasing and this is a bounded sequence. Hence, by the least upper bound
principle it converges to a real number and we define that number as exp(x).
Moreover, if we fix any positive real number B, then given any approximation
error ε > 0, we can find a fixed N so that em(x) is within ε of the actual value
exp(x) for all x with |x| < B and for all m ≥ N . This is the best possible kind
of convergence since, if we know how large the x’s are which we are working with,
we can calculate exp(x) to any chosen level of accuracy with a fixed formula
given by eN (x).

In a number of situations, matrices can be seen as a generalisation of the concept
of number. Thus, for an n×n matrix A, we can try to make sense of the “infinite
sum”:

exp(A) = 1n +A+ (1/2)A2 + (1/6)A3 + · · · =
∞∑

k=0
(1/k!)Ak

where 1 denotes the n × n identity matrix. To understand this, we need to
understand the notion of convergence of matrices. The finite sums

eN (A) = 1n +A+ (1/2)A2 + (1/6)A3 + . . . (1/N !)AN
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certainly make sense and give us an n× n matrix eN (A). To take the limit of
these as N goes to infinity, the natural sense is that each entry of these matrices
converges as N goes to infinity. Note that the (i, j)-th entry of eN (A) depends
on various entries of A not just the (i, j)-th one! So if we try to write a direct
formula for this entry it is likely to be very complicated!

Since the matrix A has n2 entries we can find a common positive constant L so
that, for all (i, j), the (i, j)-th entry Ai,j of A is bounded by L; in other words,
|Ai,j | ≤ L. Recall the matrix multiplication formula:

(B · C)i,j = Bi,1C1,j +Bi,2C2,j + · · ·+Bi,nCn,j

Exercise: Using the above formula, prove by induction that

|(Ak)i,j | ≤ nk−1Lk ≤ nkLk

(since n ≥ 1).

It follows easily that
|eN (A)i,j | ≤ eN (nL)

By the standard theory of convergent sequences one can now conclude that
eN (A)i,j converges for each (i, j). In conclusion, we see that exp(A) makes sense
for any matrix A.

Given a pair of matrices A and B, we would like to understand how exp(A+B)
can be expressed in terms of exp(A) and exp(B). Here, the analogy with numbers
breaks down! To apply the Binomial theorem to (A+B)k we need A ·B = B ·A
which does not work with matrices in general. However, if this commutativity
condition holds then, as above we can check (using absolute convergence again)
that

exp(A+B) = exp(A) · exp(B) if A ·B = B ·A

In particular, we note that (tA) · (sA) = stA2 for s and t scalars, so that

exp((t+ s)A) = exp(tA+ sA) = exp(tA) · exp(sA)

Thus, every matrix A gives rise to a 1-parameter flow! Let us look at some
simple examples.

Some examples

Taking A to be 1n, the identity matrix, we see that the diagonal terms of exp(t1n)
are given by exp(t) and the off diagonal terms are all 0. So exp(t1n) = exp(t)1n

1.
More generally, if we takeA to be a diagonal matrixD with the numbers c1, . . . , cn

on the diagonal, we see easily that exp(tD) is the diagonal matrix with the
1This should not give the impression that exp(tA) = exp(t) exp(A) for a general matrix! It

is easy to write examples of A where this is false!
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functions exp(tc1), . . . , exp(tcn) on the diagonal. In other words, we have the
linear operation that scales (or shrinks!) at different rates along different axes.

Next, let us take the case where A is the 2× 2 matrix I =
(

0 −1
1 0

)
. We note

that I2 = −12. Hence, it follows that

Ik =
{

(−1)r12 ; k = 2r
(−1)rI ; k = 2r + 1

It then follows that
exp(tI) =

(
f(t) −g(t)
g(t) f(t)

)
where f(t) and g(t) are given by the power series as below

f(t) =
∞∑

r=0
(−1)r t2r

(2r)!

g(t) =
∞∑

r=0
(−1)r t2r+1

(2r + 1)!

We recognise that f(t) is the power series for cos t and g(t) is the power series
for sin t. In other words, exp(tI) is the familiar 1-parameter group of rotations.
We further note that

exp(tI) = cos t12 + sin tI

which is the matrix version of de Moivre’s identity!

Finally, let us consider the matrix N =
(

0 1
0 0

)
. In this case N2 = 0, so

exp(tN) = 12 + tN . Writing this out in full we have

exp(tN) =
(

1 t
0 1

)
This is the 1-parameter group of shearing as seen earlier.

It is not a coincidence that the three examples we looked at are the scaling,
rotation and shear. As we shall see below, all flows of the type exp(tA) are
made up of such flows.
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Homogeneous Linear Ordinary Differential Equations with
Constant Coefficients

The matrix entries of exp(tA) are differentiable functions of t. In fact, we check

d

dt
exp(tA) = lim

h→0

exp((t+ h)A)− exp(tA)
h

= lim
h→0

exp(hA) · exp(tA)− exp(tA)
h

= lim
h→0

exp(hA)− 1n

h
· exp(tA)

= A · exp(tA)

where we have used the power series for exp(hA) to check that exp(hA)−1n

h goes
to A as h goes to 0.

In particular, if ~v0 is any n× 1 column vector and we define ~v(t) = exp(tA) · ~v0,
then:

d~v

dt
= A · ~v

Turning this around, given any equation of the above form, we have written
down the associated flow and the solution given a starting point ~v0. Since the
right-hand side of this equation depends linearly on the entries of ~v and the
coefficients (which are the entries Ai,j) are given constants, we say that this is
a linear differential equation with constant coefficients. Since the multiple of a
solution is also a solution, we say that this is a homogeneous equation. While
we have actually determined the complete flow, it is worth noting that given
the “initial condition” ~v(0) = ~v0, we have found the solution which satisfies this
condition. Thus we have solved an initial value problem.

We will see a general result that will imply that the solution to this problem
(and more general ones) is unique. Hence, we have indeed found the solution to
the initial value problem (IVP) for a homogeneous linear Ordinary Differential
Equation (ODE). This solution plays an important role in understanding more
general equations, so we will spend a little more time with it!
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