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What is a differential Equation

Before we try to understand differential equations, we should first try to
understand what one means by an equation! In high school, one learned to
solve (a system of) linear equations. For example, the problem of finding , 
and  so that

is a problem of solving linear equations. The more fancy way of stating this
problem is to write it as a matrix identity

or equivalently  with appropriate values for ,  and . A
solution can be found1 by using row-reduction of the  matrix ; this is
a column vector  of length 3 such that . Further, if we have a
column vector  so that , then we see easily that

 is another solution of the linear equation.

The problem of solving for  so that the identity  holds, where 
and  are known is the problem of solving linear equations. This equation is
called the inhomogeneous equation and the equation  is called the
homogeneous equation. A similar situation will arise in differential equations
and so the terminology inhomogeneous and homogeneous will re-appear in
that more general setting.

A different problem studied in high school was that of solving quadratic
equations. For example, the problem of finding an  so that .
This is solved by the method of “completing the square” which gives the two
solutions  and . While this looks like a homogeneous problem, it
is not really so! We will see this more clearly once we understand the
terminology better.
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A more complex problem is that of solving a quadratic equation in two
variables. For example, the problem of finding  and  such that 
. One “classical” solution is given in the parametric form

A more “traditional” solution is . (Question: What
is the difference between the adjectives “classical” and “traditional”!���) We
note that the first solution does not makes sense for all values of  since

 could be 0! It also misses the solution . On the other
hand, the second solution (may) look like “cheating” since it introduces two
“new” functions sine and cosine which are just meant to solve this particular
equation! The important thing to note is that the solution to an equation can
be a (collection of) function of one (or more) parameters. You will see many
such examples in your course on Curves and Surfaces.

Looking at the above examples and others like them (and being
mathematically minded) we quickly generalise and say that the problem of
solving equations can be stated as finding  which satisfy the

identities

where  are given functions of  variables. What kinds of functions?

If the functions are all linear functions, then we say these are linear
equations, if the functions are quadratic, we say that this is a system of
quadratic equations? Of course, we have learned about much more general
functions than polynomial functions so the scope is literally limitless! For
example, we could ask for a solution of the equations

(No need to challenge yourself by trying to solve this equation. It will not
come in the exam!���)

Now that we have understood what an equation is, let us try to understand
what a differential equation is. It is an equation of the same type as before
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with the added condition that the derivatives (or differentials) of the
variables can also appear in the equation in place of some of the variables.
Since you have all studied derivatives properly, you will ask: “Derivatives
with respect to what?” The somewhat “correct” answer is: “Derivatives with
respect to the parameter.” Still confused you ask: “Which parameter?”
Answer: “The parameters of the solution.” At this point it looks like the
definition is circular and you might start feeling like we are following

 for too long!��� So you will have to take it on faith that a
general definition of this type can actually be given in a way that makes
sense. However, defining the “abstract” notion of a differential which can
take the place of a derivative, and so on will take us too far afield.

Let us therefore do as our ancestors did and work with examples. (Just as we
did for equations above.) The simplest equation we can write using a
derivative is  for some “simple” function . This is nice
because we already know how to solve this equation! The solution is given by

 where , where the latter is the (indefinite)

integral of  with respect to ; this is just the fundamental theorem of
calculus! So, we already learned to solve differential equations like:

 with solution , for a constant ,
 with solution , for a constant ,

… and so on. (It is good that in the very first class in a Mathematics course
you have learned to solve infinitely many problems, so savour the moment!���)

Still, the above kind of equation that already defines  explicitly as a function

of  is not very different from an equation of the type  which can
be solved by “doing something” with only the right-hand-side. A much more
interesting type of equation is . It may seem perplexing that
this is more complex as all that we did is to replace  by  on the right-hand-
side. Indeed, if  is never zero, then we can write (by inverse function
theorem!)  and now solve for  as a function of . By the
inverse function theorem, the inverse of this function, is the solution to our
problem. For example:

 gives  (for ); which has the solution
. Inverting this gives .

 gives ; which has the solution 
. Inverting this gives .

… and so on. To make the problem significantly more difficulty, we need to do
one of the following:
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Replace  by a vector-valued function of  and  by a vector valued
function. Equivalently, we can consider a system of equations

We can make  a function of and .

If we want to make our work even more difficult, we can combine these two
approaches and consider systems of equations of the type:

This kind of equation will be the main focus of our study in the first part of
this course.

Why do want to study differential equations?

The above example may be good enough to motivate mathematicians. Why
would scientists want to learn differential equations?

A wonderful explanation is given in the book “The Character of Physical Law”
by Richard Feynman. In it he explains why it is natural for physical laws to be
expressed in the form of differential equations.

Rather than repeat his explanation here, let us look at it in our own way. The
job of science is to make predictions about a changing universe. The
fundamental way we keep track of change is by measuring some physical
quantity at different times. Once we have a clock (the most fundamental
physical instrument!), we can assign a (real) number to each time epoch. At
each such epoch we also measure various physical quantities; these too are
given as real numbers. In other words, the changing physical quantity is
represented by a function  which gives the value  of the
physical quantity at time . More generally, we may keep track of a number
of such physical quantities and so we have a function ; a vector-
valued function in the mathematical sense.
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Physical laws typically do not directly provide a formula for this function .
This is because, at the very least, different people have different clocks and
so this function is not “universal”. Instead, there are two kinds of laws that
we see:

The physical quantities  depend on each other in a particular

way. Mathematically, this is formulated as a function 

remaining unchanged with time.
The physical quantities  changes with time as a function  of its
current value. In other words, an identity of the type 
holds.

The first form of a physical law as above is an “conservation” law; it says that
something is invariant with time. The second form is an “evolution” or
“dynamical” law. It says that nature exhibits a “feedback” mechanism; it says
that the way physical quantities change depend on on their current values.

It is clear that the second law is in the form of a differential equation. Since
some physical quantities are derivatives of other physical quantities (for
example, acceleration is the derivative of velocity), the first type of law is
often can also be seen as a general form of differential equation. However,
there is a more intricate way in which the two types of laws are related
which was discovered by Emmy Noether (one of the greatest mathematicians
of the previous century). The evolution law can be see as an “infinitesimal”
group action; the conservation laws are given as functions that are invariant
under this group action. A simple example is as follows.

Suppose that the evolution equation is given in the form:

In other words, . One can then check

It follows that the function  is a conserved quantity.

We will see more examples of this type during the course.

How to visualise Differential equations

As seen above, in a lot of cases, an ordinary differential equation takes the

form ; in fact, in may cases,  does not depend on  either.
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Here  denotes the -tuple of physical quantities that we want to see the
evolution of. This equation then expresses the dynamical law that describes
this evolution. Physically, the -tuple  need not really be a vector and all its
entries need not be of the same type. However, when we study differential
equations mathematically this need not concern us! We can think of  as a

point in -dimensional space and  as a vector at that point. The above
equation then describes a (time-dependent) “flow” in -dimensional space.

In other words, a solution of the above equation takes the form
 which represents how a “drop of ink” which starts at  will

be seen to travel if its velocity at all times is described by the above equation.

Mathematically, this means  and ;
we will explain this later as an “initial value problem” (IVP).

So, an ordinary differential equation can be visualised as a equation
describing the velocity at time  and position  of a flow that is happening in

-dimensional space. So  is the position at time  of the point
which started at .

Note that time is also a physical quantity so our vector of physical quantities
can include time by putting  and then the differential equation
becomes  where . Thus,
mathematically speaking, a time-dependent equation can be also seen as a
time-independent equation in one larger dimension.
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If the flow is time-independent, then it is clear that if we track the point at 
(as above), then it passes through a point  units of time before the point at

 passes through the same point. In other words, we see that we have an
equation:

Substituting for  and noting that ,  and  are “arbitrary”, we obtain

With some simple group theory we can see this a little better. Suppose 
denotes the group of all differentiable maps from -dimensional space to
itself whose inverse exists and is differentiable. Then for each time , we
have an element  of  which describes the “snapshot” of the flow at time
; we then have  as the position at time  of the point that started at 

. In other words . Writing the above equation in terms of 
we see that

In other words, ; the map  is a group
homomorphism!

In summary, an ordinary differential equation can be seen as describing the
velocity vector field of a flow in -dimensional space. When the flow is time-
independent, we can see such a flow as the “infinitesimal” version of a one-
parameter group of transformations of the -dimensional space to itself.

This is a good point for students to go back and revise the solutions of
linear equations by the row-reduction method.↩
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