
“Best” Line through points

Given a pair of points in the plane there is a unique line that joins them. How
about if we are given three points? Clearly, if the points are not collinear, then
we cannot ask for a line that joins these three points. The problem appears to
become even worse if we ask for a line that fits more points, but we “know” that
more data should be more information!

So, given a bunch of points (xi, yi) in the plane, we are asking for a line that
fits these points. One way to approach this problem is to say that the points
(xi, yi) contain experimental errors and actually lie on a line and our job is to
determine this line.

A line in the plane is given by an equation of the form y −mx = c. For each
fixed m, we calculate yi −mxi = ci. If m is the slope of the line we are looking
for, then these values ci are of the form c + ei, where ei is a measure of the
experimental error in the measurement of the pair (xi, yi). As usual, we assume
that this experimental error ei is normally distributed around 0 with standard
deviation s (which is independent of i).

In that case, the likelihood (density) of obtaining the result that we have is (here
N is the number of points)

L =
N∏
i

exp(−e2
i /2s)

s
√

2π

Equivalently, the log-likelihood is given by

l = −(N/2) log(2π)−N log(s)−
N∑
i

e2
i

2s

Since s can be assumed to be a quantity that is determined by the experimental
setup, it is “fixed”. Thus l is maximum if

∑N
i e2

i is minimum.

In other words, the maximum likelihood estimate for the parameters m and
c (which determine the line) is associated with the case where the sum of
squares of the errors is least. We note that this is under the assumption that
the experimental errors distributed normally with mean 0 and some standard
deviation s that is fixed.

This is one way to derive the method of least square estimation which defines
the estimator as the one that minimises the sum of the squares of the errors.

Returning to the original problem, we can formulate it as follows. Consider the
vectors y = (y1, . . . , yN ), x = (x1, . . . , xN ) and u = (1, . . . , 1). We are looking
for constants m and c so that e = y −mx − cu is of the least length. This is
solved by “dropping a perpendicular” from the vector y to the plane spanned
by x and u. The base of the perpendicular is mx + cu and the length of the
perpendicular is the length of e.
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Since e is perpendicular to x and u and we have y = mx + cu + e, we obtain
the linear equations:

x · y = mx · x + cx · u
u · y = mx · u + cu · u

We can solve these equations to obtain m and c (providing x and u are linearly
independent; which is the case if some xi 6= xj).

“Best” Linear Fit

The above situation can easily be generalised as follows.

We make a sequence of measurements that produce tuples of the form
(xi,1, . . . , xi,r, yi). Theory leads us to believe that these satisfy an equation of
the form y = m1x1 + · · · + mrxr + c. As usual, we know that there will be
experimental errors so our actual equations look like

yi = m1xi,1 + · · ·+mrxi,r + c+ ei

where ei denotes an experimental error that follows a normal distribution N(0, s)
for some s which is a consequence of the experimental setup (in particular, is
independent of i). Moreover, we can either assume that the measurements for
different i are independent, so that ei are independent random variables or, at
the very least that these are uncorrelated random variables. In that case, as in
the 2-dimensional case, we can compute the log-likelihood as

l = −(N/2) log(2π)−N log(s)−
N∑
i

e2
i

2s

where N is the number of tuples as above. Again, we see that this is maximised
when the length of the vector e = (e1, . . . , eN ) is minimised. In other words, the
least squares estimator is the same as the maximum likelihood estimator.

Solving this problem can again be posed as a problem in geometry by considering
the vectors

y = (y1, y2, . . . , yN )
xj = (x1,j , x2,j , . . . , xN,j)
u = (1, 1, . . . , 1)

Our equation then becomes

y = m1x1 + · · ·+mrxr + cu + e
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In the optimal case e will be perpendicular to each of the vectors xi and the
vector u. Thus, we can obtain the optimal values m1, . . . ,mN and c by solving
the system of linear equations

x1 · y = m1x1 · x1 + · · ·+mrx1 · xr + cx1 · u
...
...

xr · y = m1xr · x1 + · · ·+mrxr · xr + cxr · u
u · y = m1u · x1 + · · ·+mru · xr + cu · u

This is a system of r+ 1 linear equations in r+ 1 unknowns, which can be solved
under the assumption that the vectors x1, . . . ,xr and u are linearly independent.
(If not, then we can eliminate one of the sets of “independent” variables xj from
consideration.)

This solution gives the least square fit for the dependent variable y or, equivalently
least square estimator for the quantities m1, . . . ,mr and c.

Whither non-linear functions?

The above may leave the impression that we are not considering the situation
where y is a non-linear function of xi’s. However, that is not the case!

Suppose we expect y to be a function f(z1, . . . , zq;m1, . . . ,mr) where f is non-
linear in the variables zi, but is linear in the parameters mk. For example, f is
a polynomial function in the zi’s and mk are the undetermined coefficients of
the polynomial. Or f is a linear combination of sine and cosine functions in the
zi’s and mk are the (Fourier-type) coefficients that we are trying to determine.
In each of these cases, we can re-write the function f in the form of a linear
combination

∑
i mifi(z). We can then put xi = fi(z) and reduce the problem

to that described above.

The combinations of sines and cosines is the context is where Gauss discovered
the method given above while trying to determine the orbit of Ceres; he simulta-
neously discovered the Fast Fourier Transform which is a quick way to carry out
the calculation.

The assumptions

The description of the problem and its solution by means of linear equations is
dependent on certain assumptions:
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Exogeneity The assumption that all the experimental errors are captured in
ei. In other words, even though the xi,j are measured quantities, there are
no errors mixed up in them.

Independence The errors ei are independent random variables that are nor-
mally distributed around 0.

Common variance This is sometimes also called homoskedasticity. This is the
condition that the random variables ei all have the same variance s.

Lack of perfect multicollinearity Since the term “independence” could be
confusing in this context, we don’t use it! However, this is the condition
that the vectors x1, . . . ,xr,u are linearly independent.

Linearity This is the condition that y depends linearly on m1, . . . ,mr.

BLUE

The solution to the problem above gives an estimator for the tuple (m1, . . . ,mr, c).
This is sometimes called Best Linear Unbiased Estimator (given the acronym
BLUE).

We say that the estimator is Linear because it has the form C · y for a suitable
matrix C whose entries are (non-linear) functions of the xi,j . The estimator is
only linear in y.

We say that the estimator is Unbiased because its expected value is the tu-
ple (m1, . . . ,mr, c) which gives the precise linear expression for y in terms of
x1, . . . , xr. One calculates that this means that C · xi = (0, . . . , 1, . . . , 0) (where
1 occurs in the i-th place) and C · u = (0, . . . , 1).

Given any estimate (n1, . . . , nr, d) for required tuple, we define the associated
residual as the difference

r̃ = y− (n1x1 + · · ·+ nrxr + du)

The length of the residual represents how far our estimate fails to match the
experimental result. Thus, one possible notion for the Best estimate would be
one for which the residual has the smallest length among all possible estimates.
We can also interpret this in terms of log-likelihood being the maximum as seen
earlier.

While calculating C is possibly, it should be pointed out that this can be com-
putationally intensive and there are quicker methods to compute the estimated
tuple (m1, . . . ,mr, c) directly.
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