Solutions to Quiz 9

- 1. For each of the following give an example or say that no such example is possible (do *exactly* 5):
- (1 mark) (a) A sequence that contains no convergent subsequence.

Solution: The sequence $(a_n) = (n)$.

(1 mark) (b) A sequence (a_n) so that $\sum_n |a_n|$ converges but $\sum_n |a_n|^2$ does not converge.

Solution: There is no such sequence. Since $\sum_{n} |a_n|$ converges, $|a_n|$ converges to 0 as n goes to infinity. So there is an N so that $|a_n| < 1$ for $n \ge N$. It follows that

$$\sum_{n \ge N} |a_n|^2 < \sum_{n \ge N} |a_n|$$

Thus, $\sum_{n} |a_n|^2$ converges.

(1 mark) (c) A linear functional which is *not* continuous.

Solution: Consider the functional $f : \mathbb{C}^{\infty} \to \mathbb{C}$ given by $f((a_1, \ldots, a_n, 0, \ldots)) = \sum_{k=1}^{n} ka_k$. This is not continuous for $\|\cdot\|_{\infty}$ norm.

(1 mark) (d) A linear operator which is *not* open.

Solution: The operator that sends every vector to 0 is not open since its image is $\{0\}$ which does not contain an open neighbourhood of 0.

(1 mark) (e) An linear operator which is 1-1 and onto but not invertible.

Solution: Consider the operator $T : \mathbb{C}^{\infty} \to \mathbb{C}^{\infty}$ given by $(a_1, a_2, ...) \mapsto (a_1, a_2/2, ...)$. In other words the sequence (a_n) is mapped to the sequence (a_n/n) . The inverse operator $(a_n) \mapsto (na_n)$ is *well-defined*. However, when we think of \mathbb{C}^{∞} with the $\|\cdot\|_{\infty}$ norm then T is a bounded operator but T^{-1} not a bounded operator.

(1 mark) (f) A bounded linear operator whose spectrum is empty.

Solution: We have proved that every operator has a non-empty closed spectrum. So there is no such operator. Sometimes, by convention, we can consider the operator $0 : \{0\} \rightarrow \{0\}$ to have empty spectrum since it is automatically invertible!

MTH402

(1 mark) (g) A linear functional $f : \mathbb{C}^{\infty} \to \mathbb{C}$ which is continuous with ℓ_2 norm but there is no $v \in \mathbb{C}^{\infty}$ such that $f(w) = \langle w, v \rangle$.

Solution: This appears to contradict Riesz representation theorem but \mathbb{C}^{∞} is *not* complete with the ℓ_2 norm! So we can take the functional $f(w) = \langle w, v \rangle$ where v is in ℓ_2 but *not* in \mathbb{C}^{∞} ; for example v = (1, 1/2, 1/3, ...). This is continuous but there is no v in \mathbb{C}^{∞} which works.

(1 mark) (h) An linear operator on a Hilbert space which is not normal.

Solution: We know that normal compact operators are diagonalisable. Hence, a finite-rank operator which is not diagonalisable is not normal. For example,

$$(a_1, a_2, \dots) \mapsto (0, a_1, 0, 0, \dots)$$

This operator is nilpotent and non-zero, so it is not diagonalisable.

(1 mark) (i) A linear operator on a Hilbert space which preserves the norm but is not unitary.

Solution: In infinite dimensions, preserving norm *does not* mean that the operator is onto. So, for example, the right-shift operator $R : \ell_2 \to \ell_2$ is norm preserving but its image lies in a proper closed subspace. Hence, it does not have an inverse and so it is not unitary.

(1 mark) (j) A linear operator on a Hilbert space that does not have a Hilbert basis of eigenvectors.

Solution: Any of the above two examples works! In other words, the right-shift operator does not have a Hilbert basis consisting of eigenvectors. Similarly, a non-zero nilpotent operator of finite rank does not have a basis consisting of eigenvectors.