Solutions to Quiz 7

- 1. Give an example for each of the following or indicate that no example is possible:
- (1 mark) (a) A compact operator which is not of finite rank.
- (1 mark) (b) A Fredholm operator that is not onto.
- (1 mark) (c) An operator that is not compact.
- (1 mark) (d) An operator that is not Fredholm.
- (1 mark) (e) An operator that is Fredholm and compact.

Solution: The operator $S : \ell_1 \to \ell_1$ given by $(a_n) \mapsto (a_n/2^n)$ is a nuclear operator and so it is compact. It is not of finite rank.

The right-shift operator $R: \ell_1 \to \ell_1$ given by

 $(a_1, a_2, \dots) \mapsto (0, a_1, a_2, \dots)$

is not onto. It has image equal to the closed subspace consisting of (a_n) where $a_1 = 0$. Its kernel is $\{0\}$. Since its kernel is finite dimensional, its image is closed and of finite codimension, so it is a Fredholm operator.

The identity operator $\mathbf{1}: \ell_1 \to \ell_1$ is not compact since the unit ball in ℓ_1 is not compact.

The operator $0: \ell_1 \to \ell_1$ which sends all elements to 0 is not Fredholm since the kernel is infinite dimensional.

Any operator $A: F \to G$ where F and G are *finite* dimensional spaces is a Fredholm operator and also compact. It is not difficult to prove the converse that these are the only compact Fredholm operators.