
Compact Operators

An operator T : V →W is called a compact operator if the image of a bounded
sequence contains a convergent subsequence.

Consider the subset set K = T (B(0, 1) in W . Given a sequence yn in K,
each yn lies in the closure of T (B(0, 1). So we have an xn in B(0, 1) so that
‖Txn − yn‖ < 1/n. Now, by the compactness of T , there is a subsequence
n1 < n2 < · · · so that Txnk converges in W ; let y be its limit. It follows that
ynk also converges to y. Thus, we see that any sequence in K has a convergent
subsequence. In other words, K is sequentially compact. Since K is contained in
a metric space, this is the same as saying that K is compact.

In other words, an operator T : V →W is compact if and only if T (B(0, 1)) is
compact. Since a compact set is closed and bounded, so it follows that T is a
bounded operator.

Divergent sequences

In order to check the consequences of compactness we need to have a method
to create sequences that do not contain a convergent subsequence! Let U be
a closed proper subspace of V . Let v be in V and not in U . Define a linear
functional f : U + C · u→ C by f(u+ z · v) = z.

Exercise: Check that f is continuous. (Hint: Use the fact that U is closed.)

Exercise: Show that there is a continuous linear functional g : V → C which is
identically 0 on U so that g(v) 6= 0. (Hint: Use the Hahn-Banach theorem.)

Scaling g if necessary, let us assume that ‖g‖ = 1. So we have a linear functional
that is 0 on U and has norm 1.

Exercise: Show that there is a unit vector w so that |g(w)| > 1/2. (Hint: Use
the definition of ‖g‖.)

For any u in U , we have g(u+ w) = g(w). It follows (using ‖g‖ = 1) that

1/2 < |g(u+ w)| ≤ ‖g‖‖u+ w‖ = ‖u+ w‖

In other words, we have d(w,U) > 1/2 (where d(w,U) = inf{‖w − u‖ : u ∈ U}).

Let 0 6= V1 ( V2 · · · be an increasing sequence of closed subspaces of V . Applying
the above to Vn ( Vn+1 we can find a sequence xi+1 in Vi+1 \ Vi so that
d(xi+1, Vi) > 1/2.

Exercise: Note that xi cannot contain a convergent subsequence. (Hint: Prove
that ‖xi − xj‖ > 1/2 whenever i 6= j.)
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Thus, given an increasing sequence of closed subspaces Vn, we can find a unit
vector xn in each Vn, so that the sequence (xn) does not contain a convergent
subsequence.

Now, as seen earlier, a finite dimensional subspace of a normed linear spaces is
automatically closed. Hence, if V is infinite dimensional, we can take Vn to be of
dimension n. It follows that (xn) is does not contain a convergent subsequence.

Exercise: Show that an infinite dimensional normed linear spaces is not locally
compact. Equivalently, show that the closed unit ball B(0, 1) in an infinite
dimensional normed linear space is not compact. Equivalently, show that the
identity operator 1 : V → V for such a space is not a compact operator.

In other words, the identity operator on a space is compact only if the space
is finite dimensional. Since the closed unit ball in Rn or Cn is compact, we see
that this necessary condition is also sufficient.

Arzela-Ascoli Theorem

Given a compact operator T : V → W , we claim that its dual operator T t :
W ∗ → V ∗ is also compact. (Recall that T tf is defined by (T tf)(v) = f(Tv).)
In order to prove this we need to show that if (fn) is a bounded sequence of
elements of W ∗ then T tfn contains a convergent subsequence. Let us assume
that ‖fn‖ ≤ C for all n.

We consider (fn) as a sequence of functions on the compact set K = T (B(0, 1)).
From the condition that fn’s are linear functionals with norms that are uniformly
bounded by C, we see that

|fn(w)− fn(w′)| ≤ C‖w − w′‖

It follows that given ε > 0, we can take δ = ε/2C to ensure that if dK(w,w′) < δ,
then |fn(w)− fn(w′) < ε for all n. (Here onward, to simplify notation, we use
dK(w,w′) = ‖w − w′‖.) Such a collection of continuous functions for which,
given ε > 0, the same δ > 0 “works” for all the functions in the collection is
called an equicontinuous collection of functions.

We need to prove that an equicontinuous sequence of functions on a compact
metric spaceK contains a uniformly convergent subsequence. This is the theorem
of Arzela-Ascoli, which we will now prove.

Exercise: Show that K contains a countable dense set. (Hint: For each n let
{xm,n}nrm=1 be the finite set of points so that ∪mB(xm,n, 1/n) cover K and show
that {xm,n}nr,∞m=1,n=1 is dense in K.)

To simplify notation, let {yp}p denote a countable dense set in K. Since the
sequence fn is uniformly bounded on K, the sequence (fn(y1)) is a bounded
collection of real numbers. Hence we can find a subsequence (n1,k) so that
(fn1,k(y1))k is convergent. We now consider the bounded sequence (fn1,k(y2)) of
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real numbers. We can find a subsequence (n2,k) of (n1,k) so that (fn2,k)(y2) is
convergent. Note that (fn2,k(y1)) is also convergent since n2,k is a subsequence
of n1,k.

Repeating this process, we can find subsequences (which are nested, i.e. each a
subsequence of the previous one) (np,k)k so that (fnq,k(yp))k is convergent for
all p ≤ q.

We then put mk = nk,k (the “diagonal trick”).

Exercise: Check that (fmk(yp)) is convergent for all p.

We thus see that we have found a subsequence (gk = fmk) of (fn) which converges
on the dense set {yp}p in K. We now show that this converges uniformly on all
of K.

Given ε > 0, for each p we choose Nε,p so that |gm(yp) − gn(yp)| < ε/3 for all
m,n ≥ Nε,p.

Secondly, using equicontinuity of the sequence, we choose δε so that |gm(y)−
gm(y′)| < ε/3 for all y, y′ ∈ K so that dK(y, y′) < δε.

By the density of {yp}, the union of B(yp, δε) over all p covers K. By the
compactness of K, there is a finite collection p1, . . . , prε so that that B(ypt , δε)
cover all of K as t varies from 1 to prε .

We take N ≥ Nε,pt for all t in 1 to prε .

Exercise: Check that |gn(y) − gm(y)‖ < ε for all n,m ≥ N . (Hint: Combine
the above inequalities.)

In other words, the sequence (gn) converges uniformly in the space of continuous
functions on K. The limit is thus continuous as required. We note that T t(gn)
is just gn ◦ T . It follows that hn = T t(gn) converges to a continuous function h̃
on B(0, 1). We now define

h(v) =
{

0 v = 0
2‖v‖h̃(v/2‖v‖) v 6= 0

Exercise: Show that h is equal to h̃ on B(0, 1) and that h is a continuous linear
functional on V and that hn converge to h in the norm topology on V ∗. (Hint:
Repeated use of the linearity of hn and continuity of the operations of addition
and scalar multiplication on a normed linear space.)

This completes the proof that T t is a compact operator.

In passing, let us note that if V is a linear space, then V is a subspace of V ∗∗ in
a natural way.

Exercise: Given a linear space V define λV : V → V ∗∗ by defining, for a vector
v in V and a linear functional f in V ∗, the value λV (v)(f) = f(v). Show that
this is λV is linear and is continuous if V is a normed linear space.
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Now, if T t is a compact operator, then, as proved above, so is (T t)t : V ∗∗ →W ∗∗.

Exercise: Check that (T t)t ◦ λV is just λW ◦ T .

It follows that T is compact whenever T t is.

Finiteness of non-zero eigenspaces

Let z be a non-zero complex number and T : V → V a compact operator. We
wish to show that the subspace Nz of V consisting of eigenvectors for eigenvalue
z is finite dimensional. (In what follows we can allow for the case where there
are no such eigenvectors, in other words, where z is not an eigenvalue.)

Exercise: Show that v is an eigenvector with eigenvalue 1 for (1/z) · T if and
only if v is an eigenvector with eigenvalue z for T .

Secondly, we note:

Exercise: Show that (1/z) · T is compact if T is compact.

Thus, we can limit ourselves to studying the subspace of eigenvectors for eigen-
value 1.

Suppose this space is not finite dimensional. We will then show that T is not
a compact operator. To do so, let us use the results of a previous subsection
to construct a sequence of unit vectors xn which are eigenvectors of T with
eigenvalue 1 such that ‖xn − xm‖ > 1/2 whenever n 6= m. Since Txn = xn, it
follows that ‖Txn − Txm‖ > 1/2. As a consequence, the sequence {Txn} does
not contain a convergent subsequence. Hence T is not compact.

We conclude that the spaces of eigenvectors of a compact operator associated
with a (fixed) non-zero eigenvalue are finite dimensional.

Applying this to T t, which is also a compact operator by the previous subsection,
we conclude the same for this operator as well.

Exercise: Show that T t(f) = z · f if and only if f is identically 0 on the image
of T − z · 1.

It follows that given any z 6= 0 there are finitely many linearly independent
continuous linear functionals f1, . . . , fk so that any continuous linear functional
that vanishes on the image of T − z · 1 is a linear combination of f1, . . . , fk.

Exercise: Show that the image of T − z · 1 is the intersection of the zero sets
of each fn.

It follows that the image of T − z · 1 is closed.

Exercise: Given a finite linearly independent collection of linear functionals
f1, . . . , fk on a vector space V , show that there are vectors v1, . . . , vk so that
fi(vj) = δi,j . (In other words, fi(vi) = 1 and fi(vj) = 0 if i 6= j.)
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Exercise: With notation as above, show that V is the direct sum of the closed
subspaces Iz = Image(T − z ·1) and the finite-dimensional span F of the vectors
v1, . . . , vk.

Let w1, . . . , wr be a basis of the finite-dimensional space Nz = Ker(T − z · 1),
which is the space of eigenvectors of T with eigenvalue z. We can define linear
functionals g1, . . . , gr on this finite-dimensional space Nz, such that gi(wj) =
δi,j . Since Nz is finite-dimensional, these linear functionals are automatically
continuous! So, by Hahn-Banach theorem, we can extend gi to continuous linear
functions hi on V . Let K be the intersection of the kernels of each hi, i.e.

K = {v ∈ V : hi(v) = 0 for all i = 1, . . . , r}

Then K is closed. Moreover,

Exercise: Show that V is the direct sum of K and Nz.

Exercise: Show that T − z · 1 gives a one-to-one and onto map from K to
Image(T − z · 1). (Hint: The map is 0 on Nz.)

Since both of these spaces are closed subspaces of V , they are Banach spaces if
V is a Banach space. It follows that T − z · 1 is an invertible map between these
spaces in that case. In fact, we can show this more directly (without using the
Baire category theorem).

We claim that there is a constant c > 0 so that

‖(T − z · 1)(v)‖ ≥ c‖v‖ for all v ∈ K

Suppose to the contrary that there is a sequence of unit vectors vn in K such
that (T − z1)(vn) goes to 0 as n goes to infinity. By the compactness of T there
is a subsequence {nk}k so that Tvnk converges to some v in V as k goes to
infinity. It follows that

zvnk = Tvnk − ((Tvnk − z1) (vnk)) converges to v as k →∞

Then, by continuity of T , we would get that Tv is the limit of zTvnk which is
zv. In other words, v would be an eigenvector of T with eigenvalue z. Since
vnk lie in K, and K is closed, this would mean that v lies in K and Nz which
only consists of 0. On the other hand vnk are unit vectors and so their limit (by
continuity of norm) must be a unit vector. This is a contradiction.

To summarise, we get a “structure” theorem for V and T with respect to a non-
zero complex number. Let Nz = Ker(T − z · 1) be the collection of eigenvectors
for eigenvalue z (which can consist of 0 if there are no such eigenvectors). Then
there is a closed subspace K of V so that V is the direct sum Nz ⊕K. On the
other “side”, there is a finite dimensional space F so that V is a direct sum of
F and Iz = Image(T − z1). Thinking T as a map Nz ⊕K → F ⊕ Iz it has a
matrix of the form (

0 0
0 G

)

5



where G : K → Iz is an isomorphism. It is worth re-iterating that Nz and F are
finite dimensional spaces.

Continuity of index

The index of the map T − z1 is defined as the difference dim(F ) − dim(Nz).
In words, it is the difference between the codimension of its image and the
dimension of its kernel. Note that, for an isomorphism, both numbers are 0, so
the index is 0.

We now want to show that the index is a continuous function of z. Since the
value is an integer and the complex numbers are connected, the index will be
constant. We know that T − z1 is invertible for large values of z (for example if
z > ‖T‖). This shows that the index is 0.

As seen above, given a finite dimensional subspace N of normed linear space
V , we can use the Hahn-Banach theorem to produce a supplementary closed
subspace K; in other words, V is the direct sum of N and K. While proving
the Hahn-Banach theorem we have seen that the norm on V is equivalent to the
norm on the direct sum given by ‖(n, k)‖ = ‖n‖+ ‖k‖. In other words, we have
positive constants C1 > 0 and C2 > 0 so that

C1‖n+ k‖ ≤ ‖n‖+ ‖k‖ ≤ C1‖n+ k‖

for all n in N and k in K. A different proof of the same equivalence can be
found when V is a Banach space by using the open mapping theorem.

Also seen in the previous section, that if I is a closed subspace of V so that it
is defined by the vanishing of finitely many continuous linear functionals, then
there is a finite dimensional supplement F to I in V .

Exercise: Show that a closed subspace I of V is defined as the locus of vanishing
of a finite collection of continuous linear functionals if and only if V/I is a finite
dimensional vector space.

Again, in this case, we can see that the norm on V is equivalent to the norm on
the direct sum given by ‖(p, q)‖ = ‖p‖+ ‖q‖ for all p in F and q in I.

When we have decompositions as above, we can view a continuous linear operator
L : V → V in the “block matrix” form as given above(

A B
C D

)
where A : N → F , B : K → F , C : N → I and D : K → I are continuous linear
operators. Moreover, the usual norm on linear operators V → V can be seen to
be equivalent to the norm ‖A‖+ ‖B‖+ ‖C‖+ ‖D‖. (Note: We can also take

6



any other norm on 2 × 2 matrices and it is equivalent.) In particular, we can
note that a linear operator L′ which has the form(

A′ B′

C ′ D′

)
is “close” to L if and only if each of the components is “close” to the corresponding
component of L. This idea is critical to the proof that follows.

We will now assume that L has a specific form similar to the one found for
T − z1 in the previous subsection. Specifically, let us assume that L has the
form (

0 0
0 G

)
where G : K → I is invertible. Such a map, is called a Fredholm operator; it
has a finite dimensional kernel N and a finite dimensional co-kernel (supplement
F to the image I which is closed) and gives an isomorphism (G) between the
supplement K to N and the image I.

Instead of proving continuity (local constancy) of the index for T − z1, we will
show that any operator “close enough” to a Fredholm operator is also a Fredholm
operator and has the same index.

As seen in an earlier section, if D : K → I is sufficiently close to G, then D is
also invertible.

Exercise: Show that if ‖D −G‖ < 1/‖G−1‖, then D is invertible.

Hence, if M is sufficiently close to L and has the form(
A B
C D

)
then D : K → I is invertible. We want to use this to compute the index of M
and show that it is the same as dim(F )− dim(N).

We note that the map P : F ⊕ I → F ⊕ I given by the matrix(
1F −BD−1

0 1I

)
is an isomorphism. Similarly, the map Q : N ⊕K → N ⊕K given by the matrix(

1N 0
−D−1C 1K

)
is also an isomorphism. It follows that the kernel (respectively co-kernel) of M
are isomorphic to the kernel (respectively co-kernel) of PMQ : N ⊕K → F ⊕ I.
We calculate

PMQ =
(
A−BD−1C 0

0 D

)
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Since D is an isomorphism we see that the kernel and co-kernel of PMQ can be
identified with the kernel and co-kernel of A−BD−1C : N → F .

A more computational (and less “magical”) way of seeing this is given below.

In order to understand the image of M , we have to solve M(n + k) = p + q.
This gives A(n) + B(k) = p and C(n) + D(k) = q. Again, using the fact
that D is an isomorphism, we can write k = D−1(q − C(n)). It follows that
(A−BD−1C)(n) +BD−1(q) = p. In other words, we need to solve

(A−BD−1C)(n) = p−BD−1(q)

Note that the map (p, q) 7→ (p−BD−1(q), q) is an isomorphism from V to itself.
Thus, the supplement to the image of (A−BD−1C) in F is also a supplement
to the image of M .

In other words, we have shown isomorphisms between the kernel and supplement
of M and the kernel and supplement of A− BD−1C. The important point is
that the latter is a linear map between the finite dimensional spaces N and F .

Exercise: Let A′ : N → F be a linear map between finite dimensional spaces N
and F . Let NA be the kernel of A′ and FA be a supplement to the image of A′.
Show that dim(FA)−dim(NA) = dim(F )−dim(N). (Hint: Use the rank-nullity
theorem in linear algebra!)

To summarise, we have shown that the index of M is the same as the index of L
whenever M is close enough to L. This is precisely what we wanted to prove.

Spectrum of a Compact operator

We now study the spectrum of a compact operator T : V → V when V is a
Banach space.

One the important consequence of the results of the previous section is that (for
z 6= 0) the dimension of the kernel of T − z1 is the same as the dimension of the
co-kernel V/Image(T − z1). In particular, T − z1 is one-to-one if and only if it
is onto. Moreover, in this case, we have seen that T − z1 is invertible.

In other words, z 6= 0 lies in the spectrum of T if and only if there is a non-zero
eigenvector with eigenvalue z.

Exercise: Show that the left-shift (or right-shift) operator is not compact.

As proved earlier, the closed unit ball B(0, 1) is compact if and only if V is a
finite-dimensional space.

Exercise:: Show that if T : V → V is a compact operator and V is an infinite
dimensional Banach space, then T is not onto. (Hint: If T is compact and onto
then show that the closure of the unit ball is compact.)
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It follows that the spectrum of T always contains 0 if T is a compact infinite-
dimensional operator.

We have seen that the spectrum σ(T ) is contained in the set {z : |z| ≤ ‖T‖} and
is in fact a bounded closed subset in the complex plane C. We now claim that
for a compact operator T the set σ(T ) ∩ {z : |z| ≥ c} is finite for c > 0. In other
words, there are at most finitely many eigenvalues of T which are outside a disk
around the origin. Yet another way to say this is to say that if σ(T ) has a limit
point, then that point has to be 0.

To prove this, let us assume that {z : |z| ≥ c} is contains infinitely many
eigenvalues. We will use this to show that T is not compact. Since this set is
bounded, it contains a convergent sequence. Let (zn) be a convergent sequence
of eigenvalues of T which converges to w and all of these lie in {z : |z| ≥ c}. Let
vn be the unit norm eigenvectors of T corresponding to zn. Let Vn be the span
of v1, . . . , vn. This is a finite dimensional space, hence closed. As seen above, we
can find xn in Vn \ Vn−1 which are unit vectors so that d(xn, Vn−1) > 1/2.

Exercise: Show that (T − zn1)xn lies in Vn−1. (Hint: Use an expression of the
form xn =

∑n
k=1 akvk and the fact that vk is an eigenvector with eigenvalue zk.)

We will now show that (1/zn)Tvn does not contain a convergent subsequence.
We calculate, for n > m

1
zn
Tvn −

1
zm

Tvm = vn − vm + 1
zn

(T − zn1)vn −
1
zm

(T − zm1)vm ∈ vn + Vn−1

It follows that the left-hand side has norm at least 1/2 by the choice of vn.

Exercise: Show that (1/zn)vn is a bounded sequence. (Hint: Show that the
norm of all these vectors is bounded by 1/c.)

Thus, we have bounded sequence whose image under T does not contain a
convergent sequence. It follows that T is not compact.

We conclude that the spectrum of an infinite-dimensional compact operator is of
the form {0} tD where D is a collection of non-zero eigenvalues of the operator
and it has no limit point except possibly 0. (D can be empty or finite and
non-empty as well.) The element 0 need not be an eigenvalue. Finally, for each
eigenvalue in D has a finite-dimensional space of eigenvalues.
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