Compact Operators

An operator $T: V \rightarrow W$ is called a compact operator if the image of a bounded sequence contains a convergent subsequence.
Consider the subset set $K=\overline{T(B(0,1)}$ in W. Given a sequence y_{n} in K, each y_{n} lies in the closure of $T\left(B(0,1)\right.$. So we have an x_{n} in $B(0,1)$ so that $\left\|T x_{n}-y_{n}\right\|<1 / n$. Now, by the compactness of T, there is a subsequence $n_{1}<n_{2}<\cdots$ so that $T x_{n_{k}}$ converges in W; let y be its limit. It follows that $y_{n_{k}}$ also converges to y. Thus, we see that any sequence in K has a convergent subsequence. In other words, K is sequentially compact. Since K is contained in a metric space, this is the same as saying that K is compact.

In other words, an operator $T: V \rightarrow W$ is compact if and only if $\overline{T(B(0,1))}$ is compact. Since a compact set is closed and bounded, so it follows that T is a bounded operator.

Divergent sequences

In order to check the consequences of compactness we need to have a method to create sequences that do not contain a convergent subsequence! Let U be a closed proper subspace of V. Let v be in V and not in U. Define a linear functional $f: U+\mathbb{C} \cdot u \rightarrow \mathbb{C}$ by $f(u+z \cdot v)=z$.

Exercise: Check that f is continuous. (Hint: Use the fact that U is closed.)
Exercise: Show that there is a continuous linear functional $g: V \rightarrow \mathbb{C}$ which is identically 0 on U so that $g(v) \neq 0$. (Hint: Use the Hahn-Banach theorem.)

Scaling g if necessary, let us assume that $\|g\|=1$. So we have a linear functional that is 0 on U and has norm 1 .

Exercise: Show that there is a unit vector w so that $|g(w)|>1 / 2$. (Hint: Use the definition of $\|g\|$.)

For any u in U, we have $g(u+w)=g(w)$. It follows (using $\|g\|=1$) that

$$
1 / 2<|g(u+w)| \leq\|g\|\|u+w\|=\|u+w\|
$$

In other words, we have $d(w, U)>1 / 2($ where $d(w, U)=\inf \{\|w-u\|: u \in U\})$. Let $0 \neq V_{1} \subsetneq V_{2} \cdots$ be an increasing sequence of closed subspaces of V. Applying the above to $V_{n} \subsetneq V_{n+1}$ we can find a sequence x_{i+1} in $V_{i+1} \backslash V_{i}$ so that $d\left(x_{i+1}, V_{i}\right)>1 / 2$.
Exercise: Note that x_{i} cannot contain a convergent subsequence. (Hint: Prove that $\left\|x_{i}-x_{j}\right\|>1 / 2$ whenever $i \neq j$.)

Thus, given an increasing sequence of closed subspaces V_{n}, we can find a unit vector x_{n} in each V_{n}, so that the sequence $\left(x_{n}\right)$ does not contain a convergent subsequence.

Now, as seen earlier, a finite dimensional subspace of a normed linear spaces is automatically closed. Hence, if V is infinite dimensional, we can take V_{n} to be of dimension n. It follows that $\left(x_{n}\right)$ is does not contain a convergent subsequence.
Exercise: Show that an infinite dimensional normed linear spaces is not locally compact. Equivalently, show that the closed unit ball $\overline{B(0,1)}$ in an infinite dimensional normed linear space is not compact. Equivalently, show that the identity operator $1: V \rightarrow V$ for such a space is not a compact operator.
In other words, the identity operator on a space is compact only if the space is finite dimensional. Since the closed unit ball in \mathbb{R}^{n} or \mathbb{C}^{n} is compact, we see that this necessary condition is also sufficient.

Arzela-Ascoli Theorem

Given a compact operator $T: V \rightarrow W$, we claim that its dual operator T^{t} : $W^{*} \rightarrow V^{*}$ is also compact. (Recall that $T^{t} f$ is defined by $\left(T^{t} f\right)(v)=f(T v)$.) In order to prove this we need to show that if $\left(f_{n}\right)$ is a bounded sequence of elements of W^{*} then $T^{t} f_{n}$ contains a convergent subsequence. Let us assume that $\left\|f_{n}\right\| \leq C$ for all n.
We consider $\left(f_{n}\right)$ as a sequence of functions on the compact set $K=\overline{T(B(0,1))}$. From the condition that f_{n} 's are linear functionals with norms that are uniformly bounded by C, we see that

$$
\left|f_{n}(w)-f_{n}\left(w^{\prime}\right)\right| \leq C\left\|w-w^{\prime}\right\|
$$

It follows that given $\epsilon>0$, we can take $\delta=\epsilon / 2 C$ to ensure that if $d_{K}\left(w, w^{\prime}\right)<\delta$, then $\mid f_{n}(w)-f_{n}\left(w^{\prime}\right)<\epsilon$ for all n. (Here onward, to simplify notation, we use $d_{K}\left(w, w^{\prime}\right)=\left\|w-w^{\prime}\right\|$.) Such a collection of continuous functions for which, given $\epsilon>0$, the same $\delta>0$ "works" for all the functions in the collection is called an equicontinuous collection of functions.

We need to prove that an equicontinuous sequence of functions on a compact metric space K contains a uniformly convergent subsequence. This is the theorem of Arzela-Ascoli, which we will now prove.

Exercise: Show that K contains a countable dense set. (Hint: For each n let $\left\{x_{m, n}\right\}_{m=1}^{n_{r}}$ be the finite set of points so that $\cup_{m} B\left(x_{m, n}, 1 / n\right)$ cover K and show that $\left\{x_{m, n}\right\}_{m=1, n=1}^{n_{r}, \infty}$ is dense in K.)
To simplify notation, let $\left\{y_{p}\right\}_{p}$ denote a countable dense set in K. Since the sequence f_{n} is uniformly bounded on K, the sequence $\left(f_{n}\left(y_{1}\right)\right)$ is a bounded collection of real numbers. Hence we can find a subsequence $\left(n_{1, k}\right)$ so that $\left(f_{n_{1, k}}\left(y_{1}\right)\right)_{k}$ is convergent. We now consider the bounded sequence $\left(f_{n_{1, k}}\left(y_{2}\right)\right)$ of
real numbers. We can find a subsequence $\left(n_{2, k}\right)$ of $\left(n_{1, k}\right)$ so that $\left(f_{n_{2, k}}\right)\left(y_{2}\right)$ is convergent. Note that $\left(f_{n_{2, k}}\left(y_{1}\right)\right)$ is also convergent since $n_{2, k}$ is a subsequence of $n_{1, k}$.

Repeating this process, we can find subsequences (which are nested, i.e. each a subsequence of the previous one) $\left(n_{p, k}\right)_{k}$ so that $\left(f_{n_{q, k}}\left(y_{p}\right)\right)_{k}$ is convergent for all $p \leq q$.

We then put $m_{k}=n_{k, k}$ (the "diagonal trick").
Exercise: Check that $\left(f_{m_{k}}\left(y_{p}\right)\right)$ is convergent for all p.
We thus see that we have found a subsequence $\left(g_{k}=f_{m_{k}}\right)$ of $\left(f_{n}\right)$ which converges on the dense set $\left\{y_{p}\right\}_{p}$ in K. We now show that this converges uniformly on all of K.

Given $\epsilon>0$, for each p we choose $N_{\epsilon, p}$ so that $\left|g_{m}\left(y_{p}\right)-g_{n}\left(y_{p}\right)\right|<\epsilon / 3$ for all $m, n \geq N_{\epsilon, p}$.

Secondly, using equicontinuity of the sequence, we choose δ_{ϵ} so that $\mid g_{m}(y)-$ $g_{m}\left(y^{\prime}\right) \mid<\epsilon / 3$ for all $y, y^{\prime} \in K$ so that $d_{K}\left(y, y^{\prime}\right)<\delta_{\epsilon}$.
By the density of $\left\{y_{p}\right\}$, the union of $B\left(y_{p}, \delta_{\epsilon}\right)$ over all p covers K. By the compactness of K, there is a finite collection $p_{1}, \ldots, p_{r_{\epsilon}}$ so that that $B\left(y_{p_{t}}, \delta_{\epsilon}\right)$ cover all of K as t varies from 1 to $p_{r_{\epsilon}}$.
We take $N \geq N_{\epsilon, p_{t}}$ for all t in 1 to $p_{r_{\epsilon}}$.
Exercise: Check that $\mid g_{n}(y)-g_{m}(y) \|<\epsilon$ for all $n, m \geq N$. (Hint: Combine the above inequalities.)

In other words, the sequence $\left(g_{n}\right)$ converges uniformly in the space of continuous functions on K. The limit is thus continuous as required. We note that $T^{t}\left(g_{n}\right)$ is just $g_{n} \circ T$. It follows that $h_{n}=T^{t}\left(g_{n}\right)$ converges to a continuous function \tilde{h} on $B(0,1)$. We now define

$$
h(v)= \begin{cases}0 & v=0 \\ 2\|v\| \tilde{h}(v / 2\|v\|) & v \neq 0\end{cases}
$$

Exercise: Show that h is equal to \tilde{h} on $B(0,1)$ and that h is a continuous linear functional on V and that h_{n} converge to h in the norm topology on V^{*}. (Hint: Repeated use of the linearity of h_{n} and continuity of the operations of addition and scalar multiplication on a normed linear space.)
This completes the proof that T^{t} is a compact operator.
In passing, let us note that if V is a linear space, then V is a subspace of $V^{* *}$ in a natural way.

Exercise: Given a linear space V define $\lambda_{V}: V \rightarrow V^{* *}$ by defining, for a vector v in V and a linear functional f in V^{*}, the value $\lambda_{V}(v)(f)=f(v)$. Show that this is λ_{V} is linear and is continuous if V is a normed linear space.

Now, if T^{t} is a compact operator, then, as proved above, so is $\left(T^{t}\right)^{t}: V^{* *} \rightarrow W^{* *}$.
Exercise: Check that $\left(T^{t}\right)^{t} \circ \lambda_{V}$ is just $\lambda_{W} \circ T$.
It follows that T is compact whenever T^{t} is.

Finiteness of non-zero eigenspaces

Let z be a non-zero complex number and $T: V \rightarrow V$ a compact operator. We wish to show that the subspace N_{z} of V consisting of eigenvectors for eigenvalue z is finite dimensional. (In what follows we can allow for the case where there are no such eigenvectors, in other words, where z is not an eigenvalue.)

Exercise: Show that v is an eigenvector with eigenvalue 1 for $(1 / z) \cdot T$ if and only if v is an eigenvector with eigenvalue z for T.

Secondly, we note:
Exercise: Show that $(1 / z) \cdot T$ is compact if T is compact.
Thus, we can limit ourselves to studying the subspace of eigenvectors for eigenvalue 1 .

Suppose this space is not finite dimensional. We will then show that T is not a compact operator. To do so, let us use the results of a previous subsection to construct a sequence of unit vectors x_{n} which are eigenvectors of T with eigenvalue 1 such that $\left\|x_{n}-x_{m}\right\|>1 / 2$ whenever $n \neq m$. Since $T x_{n}=x_{n}$, it follows that $\left\|T x_{n}-T x_{m}\right\|>1 / 2$. As a consequence, the sequence $\left\{T x_{n}\right\}$ does not contain a convergent subsequence. Hence T is not compact.

We conclude that the spaces of eigenvectors of a compact operator associated with a (fixed) non-zero eigenvalue are finite dimensional.
Applying this to T^{t}, which is also a compact operator by the previous subsection, we conclude the same for this operator as well.

Exercise: Show that $T^{t}(f)=z \cdot f$ if and only if f is identically 0 on the image of $T-z \cdot \mathbf{1}$.

It follows that given any $z \neq 0$ there are finitely many linearly independent continuous linear functionals f_{1}, \ldots, f_{k} so that any continuous linear functional that vanishes on the image of $T-z \cdot \mathbf{1}$ is a linear combination of f_{1}, \ldots, f_{k}.

Exercise: Show that the image of $T-z \cdot \mathbf{1}$ is the intersection of the zero sets of each f_{n}.
It follows that the image of $T-z \cdot \mathbf{1}$ is closed.
Exercise: Given a finite linearly independent collection of linear functionals f_{1}, \ldots, f_{k} on a vector space V, show that there are vectors v_{1}, \ldots, v_{k} so that $f_{i}\left(v_{j}\right)=\delta_{i, j}$. (In other words, $f_{i}\left(v_{i}\right)=1$ and $f_{i}\left(v_{j}\right)=0$ if $i \neq j$.)

Exercise: With notation as above, show that V is the direct sum of the closed subspaces $I_{z}=\operatorname{Image}(T-z \cdot \mathbf{1})$ and the finite-dimensional span F of the vectors v_{1}, \ldots, v_{k}.

Let w_{1}, \ldots, w_{r} be a basis of the finite-dimensional space $N_{z}=\operatorname{Ker}(T-z \cdot \mathbf{1})$, which is the space of eigenvectors of T with eigenvalue z. We can define linear functionals g_{1}, \ldots, g_{r} on this finite-dimensional space N_{z}, such that $g_{i}\left(w_{j}\right)=$ $\delta_{i, j}$. Since N_{z} is finite-dimensional, these linear functionals are automatically continuous! So, by Hahn-Banach theorem, we can extend g_{i} to continuous linear functions h_{i} on V. Let K be the intersection of the kernels of each h_{i}, i.e.

$$
K=\left\{v \in V: h_{i}(v)=0 \text { for all } i=1, \ldots, r\right\}
$$

Then K is closed. Moreover,
Exercise: Show that V is the direct sum of K and N_{z}.
Exercise: Show that $T-z \cdot \mathbf{1}$ gives a one-to-one and onto map from K to Image $(T-z \cdot \mathbf{1})$. (Hint: The map is 0 on N_{z}.)

Since both of these spaces are closed subspaces of V, they are Banach spaces if V is a Banach space. It follows that $T-z \cdot \mathbf{1}$ is an invertible map between these spaces in that case. In fact, we can show this more directly (without using the Baire category theorem).
We claim that there is a constant $c>0$ so that

$$
\|(T-z \cdot \mathbf{1})(v)\| \geq c\|v\| \text { for all } v \in K
$$

Suppose to the contrary that there is a sequence of unit vectors v_{n} in K such that $(T-z \mathbf{1})\left(v_{n}\right)$ goes to 0 as n goes to infinity. By the compactness of T there is a subsequence $\left\{n_{k}\right\}_{k}$ so that $T v_{n_{k}}$ converges to some v in V as k goes to infinity. It follows that

$$
z v_{n_{k}}=T v_{n_{k}}-\left(\left(T v_{n_{k}}-z \mathbf{1}\right)\left(v_{n_{k}}\right)\right) \text { converges to } v \text { as } k \rightarrow \infty
$$

Then, by continuity of T, we would get that $T v$ is the limit of $z T v_{n_{k}}$ which is $z v$. In other words, v would be an eigenvector of T with eigenvalue z. Since $v_{n_{k}}$ lie in K, and K is closed, this would mean that v lies in K and N_{z} which only consists of 0 . On the other hand $v_{n_{k}}$ are unit vectors and so their limit (by continuity of norm) must be a unit vector. This is a contradiction.

To summarise, we get a "structure" theorem for V and T with respect to a nonzero complex number. Let $N_{z}=\operatorname{Ker}(T-z \cdot \mathbf{1})$ be the collection of eigenvectors for eigenvalue z (which can consist of 0 if there are no such eigenvectors). Then there is a closed subspace K of V so that V is the direct sum $N_{z} \oplus K$. On the other "side", there is a finite dimensional space F so that V is a direct sum of F and $I_{z}=\operatorname{Image}(T-z \mathbf{1})$. Thinking T as a map $N_{z} \oplus K \rightarrow F \oplus I_{z}$ it has a matrix of the form

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & G
\end{array}\right)
$$

where $G: K \rightarrow I_{z}$ is an isomorphism. It is worth re-iterating that N_{z} and F are finite dimensional spaces.

Continuity of index

The index of the map $T-z \mathbf{1}$ is defined as the difference $\operatorname{dim}(F)-\operatorname{dim}\left(N_{z}\right)$. In words, it is the difference between the codimension of its image and the dimension of its kernel. Note that, for an isomorphism, both numbers are 0 , so the index is 0 .

We now want to show that the index is a continuous function of z. Since the value is an integer and the complex numbers are connected, the index will be constant. We know that $T-z \mathbf{1}$ is invertible for large values of z (for example if $z>\|T\|)$. This shows that the index is 0 .

As seen above, given a finite dimensional subspace N of normed linear space V, we can use the Hahn-Banach theorem to produce a supplementary closed subspace K; in other words, V is the direct sum of N and K. While proving the Hahn-Banach theorem we have seen that the norm on V is equivalent to the norm on the direct sum given by $\|(n, k)\|=\|n\|+\|k\|$. In other words, we have positive constants $C_{1}>0$ and $C_{2}>0$ so that

$$
C_{1}\|n+k\| \leq\|n\|+\|k\| \leq C_{1}\|n+k\|
$$

for all n in N and k in K. A different proof of the same equivalence can be found when V is a Banach space by using the open mapping theorem.

Also seen in the previous section, that if I is a closed subspace of V so that it is defined by the vanishing of finitely many continuous linear functionals, then there is a finite dimensional supplement F to I in V.

Exercise: Show that a closed subspace I of V is defined as the locus of vanishing of a finite collection of continuous linear functionals if and only if V / I is a finite dimensional vector space.
Again, in this case, we can see that the norm on V is equivalent to the norm on the direct sum given by $\|(p, q)\|=\|p\|+\|q\|$ for all p in F and q in I.

When we have decompositions as above, we can view a continuous linear operator $L: V \rightarrow V$ in the "block matrix" form as given above

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where $A: N \rightarrow F, B: K \rightarrow F, C: N \rightarrow I$ and $D: K \rightarrow I$ are continuous linear operators. Moreover, the usual norm on linear operators $V \rightarrow V$ can be seen to be equivalent to the norm $\|A\|+\|B\|+\|C\|+\|D\|$. (Note: We can also take
any other norm on 2×2 matrices and it is equivalent.) In particular, we can note that a linear operator L^{\prime} which has the form

$$
\left(\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right)
$$

is "close" to L if and only if each of the components is "close" to the corresponding component of L. This idea is critical to the proof that follows.
We will now assume that L has a specific form similar to the one found for $T-z \mathbf{1}$ in the previous subsection. Specifically, let us assume that L has the form

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & G
\end{array}\right)
$$

where $G: K \rightarrow I$ is invertible. Such a map, is called a Fredholm operator; it has a finite dimensional kernel N and a finite dimensional co-kernel (supplement F to the image I which is closed) and gives an isomorphism (G) between the supplement K to N and the image I.

Instead of proving continuity (local constancy) of the index for $T-z \mathbf{1}$, we will show that any operator "close enough" to a Fredholm operator is also a Fredholm operator and has the same index.

As seen in an earlier section, if $D: K \rightarrow I$ is sufficiently close to G, then D is also invertible.
Exercise: Show that if $\|D-G\|<1 /\left\|G^{-1}\right\|$, then D is invertible.
Hence, if M is sufficiently close to L and has the form

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

then $D: K \rightarrow I$ is invertible. We want to use this to compute the index of M and show that it is the same as $\operatorname{dim}(F)-\operatorname{dim}(N)$.

We note that the map $P: F \oplus I \rightarrow F \oplus I$ given by the matrix

$$
\left(\begin{array}{cc}
\mathbf{1}_{F} & -B D^{-1} \\
0 & \mathbf{1}_{I}
\end{array}\right)
$$

is an isomorphism. Similarly, the map $Q: N \oplus K \rightarrow N \oplus K$ given by the matrix

$$
\left(\begin{array}{cc}
\mathbf{1}_{N} & 0 \\
-D^{-1} C & \mathbf{1}_{K}
\end{array}\right)
$$

is also an isomorphism. It follows that the kernel (respectively co-kernel) of M are isomorphic to the kernel (respectively co-kernel) of $P M Q: N \oplus K \rightarrow F \oplus I$. We calculate

$$
P M Q=\left(\begin{array}{cc}
A-B D^{-1} C & 0 \\
0 & D
\end{array}\right)
$$

Since D is an isomorphism we see that the kernel and co-kernel of $P M Q$ can be identified with the kernel and co-kernel of $A-B D^{-1} C: N \rightarrow F$.

A more computational (and less "magical") way of seeing this is given below.
In order to understand the image of M, we have to solve $M(n+k)=p+q$. This gives $A(n)+B(k)=p$ and $C(n)+D(k)=q$. Again, using the fact that D is an isomorphism, we can write $k=D^{-1}(q-C(n))$. It follows that $\left(A-B D^{-1} C\right)(n)+B D^{-1}(q)=p$. In other words, we need to solve

$$
\left(A-B D^{-1} C\right)(n)=p-B D^{-1}(q)
$$

Note that the map $(p, q) \mapsto\left(p-B D^{-1}(q), q\right)$ is an isomorphism from V to itself. Thus, the supplement to the image of $\left(A-B D^{-1} C\right)$ in F is also a supplement to the image of M.
In other words, we have shown isomorphisms between the kernel and supplement of M and the kernel and supplement of $A-B D^{-1} C$. The important point is that the latter is a linear map between the finite dimensional spaces N and F.

Exercise: Let $A^{\prime}: N \rightarrow F$ be a linear map between finite dimensional spaces N and F. Let N_{A} be the kernel of A^{\prime} and F_{A} be a supplement to the image of A^{\prime}. Show that $\operatorname{dim}\left(F_{A}\right)-\operatorname{dim}\left(N_{A}\right)=\operatorname{dim}(F)-\operatorname{dim}(N)$. (Hint: Use the rank-nullity theorem in linear algebra!)

To summarise, we have shown that the index of M is the same as the index of L whenever M is close enough to L. This is precisely what we wanted to prove.

Spectrum of a Compact operator

We now study the spectrum of a compact operator $T: V \rightarrow V$ when V is a Banach space.

One the important consequence of the results of the previous section is that (for $z \neq 0)$ the dimension of the kernel of $T-z \mathbf{1}$ is the same as the dimension of the co-kernel $V / \operatorname{Image}(T-z \mathbf{1})$. In particular, $T-z \mathbf{1}$ is one-to-one if and only if it is onto. Moreover, in this case, we have seen that $T-z \mathbf{1}$ is invertible.

In other words, $z \neq 0$ lies in the spectrum of T if and only if there is a non-zero eigenvector with eigenvalue z.

Exercise: Show that the left-shift (or right-shift) operator is not compact.
As proved earlier, the closed unit ball $\overline{B(0,1)}$ is compact if and only if V is a finite-dimensional space.

Exercise:: Show that if $T: V \rightarrow V$ is a compact operator and V is an infinite dimensional Banach space, then T is not onto. (Hint: If T is compact and onto then show that the closure of the unit ball is compact.)

It follows that the spectrum of T always contains 0 if T is a compact infinitedimensional operator.

We have seen that the spectrum $\sigma(T)$ is contained in the set $\{z:|z| \leq\|T\|\}$ and is in fact a bounded closed subset in the complex plane \mathbb{C}. We now claim that for a compact operator T the set $\sigma(T) \cap\{z:|z| \geq c\}$ is finite for $c>0$. In other words, there are at most finitely many eigenvalues of T which are outside a disk around the origin. Yet another way to say this is to say that if $\sigma(T)$ has a limit point, then that point has to be 0 .
To prove this, let us assume that $\{z:|z| \geq c\}$ is contains infinitely many eigenvalues. We will use this to show that T is not compact. Since this set is bounded, it contains a convergent sequence. Let $\left(z_{n}\right)$ be a convergent sequence of eigenvalues of T which converges to w and all of these lie in $\{z:|z| \geq c\}$. Let v_{n} be the unit norm eigenvectors of T corresponding to z_{n}. Let V_{n} be the span of v_{1}, \ldots, v_{n}. This is a finite dimensional space, hence closed. As seen above, we can find x_{n} in $V_{n} \backslash V_{n-1}$ which are unit vectors so that $d\left(x_{n}, V_{n-1}\right)>1 / 2$.

Exercise: Show that $\left(T-z_{n} \mathbf{1}\right) x_{n}$ lies in V_{n-1}. (Hint: Use an expression of the form $x_{n}=\sum_{k=1}^{n} a_{k} v_{k}$ and the fact that v_{k} is an eigenvector with eigenvalue z_{k}.)
We will now show that $\left(1 / z_{n}\right) T v_{n}$ does not contain a convergent subsequence. We calculate, for $n>m$

$$
\frac{1}{z_{n}} T v_{n}-\frac{1}{z_{m}} T v_{m}=v_{n}-v_{m}+\frac{1}{z_{n}}\left(T-z_{n} \mathbf{1}\right) v_{n}-\frac{1}{z_{m}}\left(T-z_{m} \mathbf{1}\right) v_{m} \in v_{n}+V_{n-1}
$$

It follows that the left-hand side has norm at least $1 / 2$ by the choice of v_{n}.
Exercise: Show that $\left(1 / z_{n}\right) v_{n}$ is a bounded sequence. (Hint: Show that the norm of all these vectors is bounded by $1 / c$.)

Thus, we have bounded sequence whose image under T does not contain a convergent sequence. It follows that T is not compact.

We conclude that the spectrum of an infinite-dimensional compact operator is of the form $\{0\} \sqcup D$ where D is a collection of non-zero eigenvalues of the operator and it has no limit point except possibly 0 . (D can be empty or finite and non-empty as well.) The element 0 need not be an eigenvalue. Finally, for each eigenvalue in D has a finite-dimensional space of eigenvalues.

