The Baire Category Theorem and Applications

There are a number of contexts where we would like a certain set-theoretic
property to imply a more geometric, topological or analytic statement. For
example, if L : V — W is a 1-1 onto map of Banach spaces and L is continuous,
does this mean that it is an isomorphism? In other words, is it “automatic” that
the inverse is continuous? What properties of a subset Z C X x Y will ensure
that it is the graph is a continuous map from X to Y? In what cases can we
assert that if a limit of functions exists point-wise then the limiting values give
a nice function? To give an example of a different kind, if /,, is a sequence of
lines in the plane, how can I show that there is a point in the plane that does
not lie on any of these lines?

The Baire category theorem is a useful result in order to answer such questions. It
states if U,, is a sequence of dense open sets in complete metric space (X, d), then
the intersection of these sets is dense in X; in other words, the set G = N, U, is
dense in X.

To prove this, we will show that G meets every open set in X. In fact, it is
enough to show that G meets the open ball Bx(z,r) = {y | d(z,y) < r} for
every x in X and r > 0. (In this section, given a normed linear space V we
use By (v,r) to denote the open ball consisting of all vectors w in W such that
o — vl < 1)

Exercise: For any s such that 0 < s < r show that the closure Bx(z,s) is
contained in Bx (x,r). (Hint: Note that if y,, satisfy d(z, y,) < s and y,, converge
to z, then d(x,z) < s.)

Since Uq is dense in X, the intersection Uy N Bx (x,r/2) is non-empty. Moreover,
both these sets are open. Hence there is an 7 and an 0 < r1 < r/2 so that
Bx(x1,71) is contained in the intersection; in other words

Bx(z1,m) C Ui N Bx(z,7/2)

Exercise: Show that there is a sequence of elements z,, in X and r,, so that
0 < rpt1 > 1p/2 so that

BX (xn+la Tn-i—l) C Un+1 N BX (-r’ru rn/2)

(Hint: Use induction on n and the fact that U, is open and dense.)

Exercise: Show that zjy, lies in Bx(zg,7/2) for all p > 0. (Hint: Use
induction on p.)

Exercise: Show that (z,) is a Cauchy sequence. (Hint: Use induction to prove
that r,, <r/2™.)

Since X is a complete metric space, it follows that (x,) converges to a point y
in X.



Exercise: Show that y lies in Bx (zg,71/2) for any k. (Hint: Note that y is the
limit of (xg4p) for p > 0.)

As seen above, this means that y lies in Bx (g, k) and thus in Uy for every k.
In other words, y lies in G. We also note that y lies in Bx (x,r/2) since each
xy, lies in this closed set. It follows that y lies in Bx(x,r) as well. This proves
what we want to prove.

In applications, this result is often used in the following form. Let X, be a
sequence of closed sets in a complete metric space (X, d) such that X = U, X,,;
in other words, X is the union of the sets X,,. We then claim that the interior
of at least one X, is non-empty. We can prove this by contradiction as follows.

Suppose that X,, has empty interior for all n. It follows that the complement
U, =X\ X,,$ of X,, is open and dense in X for all n. It follows that G = N, U,
is dense in X. In particular, G is non-empty. However, X \ G = U, X,, = X. So
this is a contradiction.

Open Mapping Theorem

Given a bounded linear map L : V — W between Banach spaces, we show that,
if L is onto then image of the unit ball under L contains an open ball in W. In
other words, there is a ¢ > 0 so that the open ball By, (0, ¢) of radius ¢ in W is
contained in the image L(By (0,1)) of the unit ball in V.

First, we will show that L (By(0,1)) contains By (0,d) for a suitable d > 0.
This will use the fact that W is complete and the Baire category theorem.

Secondly, we will use the completeness of V' to show if By (0,d) is contained in
L (By(0,1)) for a suitable d, then L (By(0,1)) contains By (0,d/4).

To see the first part, we note that saying L is surjective is the same as saying
that the union of the sets L (By(0,n)), as n varies over positive integers, is
all of W. Note that these are not closed sets, so the Baire category theorem
does not apply directly. However, we note that W is also the union of the sets
L (By(0,n)) as n varies.

Exercise: Show that there isa y in W and a r > 0 so that L (By(0,1)) contains
Bw (y,r). (Hint: Use the Baire category theorem and note that L (By (0,n)) is
the same as nL (By(0,1)).)

Exercise: If y lies in L (By(0,1)), then —y also lies in L (By(0,1)). (Hint: L
is a linear operator.)

Exercise: Show that if By (y,r) is contained in L (By(0,1)), then By (0,r) is
contained in 2L (By(0,1)). Hint: Note that

L(By(0,1))+ L (Bv(0,1)) C L(Bv(0,2))

It follows that By, (0,d) is contained in L (By(0,1)) if d = r/2.



We now move to the second part where we assume that By (0, d) is contained in

Exercise: Given w in By (0,d/2"), show that there is a  in By (0,1) such
that 2"w — L(x) lies in By (0,d/2). (Hint: 2"w lies in By (0, d) which is in the
closure of L(B(0,1)).)

Now start with any z in By (0,d/4). Applying the above exercise once, we find
x1 € By (0,1) so that 4z— L(x1) lies in By (0,d/2). We now put z; = z— L(x1/4)
and note that z lies in By (0,d/8). So we can apply the exercise once again
to find x9 in By (0,1) so that 8z; — L(z3) lies in By (0,d/2. We then put
zo = z1 — L(22/8). We note that zo = z — L(z1/4 + x2/8) and 2z, lies in
By (0,d/16.

Repeating this, we find 2, = 2z — L(z1/4 + -+ + 2,/2""1) so that z, lies in
By (0,d/2"2); moreover, x; lie in By (0,1). Applying the exercise, we find
Tpy1 in By (0,1) so that 272z, — L(x,41) lies in By (0,d/2). We then put
Zni1l = 2zn — L(2,01/2"72). We again see that 2,11 = z — L(z1/4 + --- +
T /2" + 2,01 /2772)) and 2,4 lies in By (0,d/27F3).

Continuing this way, we produce z, in By (0, 1) for all n so that putting z, =
2 — L(z1/4+ -+ 2,/2"1) we have 2, lies in By (0,d/2""2).

Since V is a Banach space, the series Y. x,,/2" "1 converges to an element z of
By (0,1/2). Since L is continuous, we see that L(xy/4+- -+, /2" 1) converges
to L(z) as n goes to infinity. On the other hand, we see that L(z1/4 4+ --- +
T,/2""1) converges to z as n goes to infinity by construction. Hence, we see
that z = L(x). Now, By (0,1/2) is contained in By (0,1). So, we see that z is in
L(By(0,1)).

This completes the proof of the open mapping theorem.

Invertibility of continuous isomorphisms

Given a continuous linear operator L : V' — W between Banach spaces which
is one-to-one and onto. The usual theory about linear maps shows that there
is a linear map M : W — V so that M oL =1y and Lo M = 1y . Since L is
continuous, the open mapping theorem shows that L is open. Hence, there is
a ¢ > 0 so that By (0,c¢) C L(By(0,1)); equivalently M (Bw (0,¢)) C By (0,1).
This proves that M is bounded since |[Mw]| < (1/¢)||w]|| for all w in W.

In other words, a continuous linear operator between Banach spaces which is
one-to-one and onto has a continuous inverse.

One can apply this as follows to a pair of norms ||-||; and ||-||2 on V. Suppose that
both norms make V into a Banach space. Moreover, let us assume that there is
a positive constant C' such that ||v||; < C||v||2 for all v in V. The identity map
(V, I-ll2) = (V,]|-]|1) is then a continuous one-to-one and onto linear operator.
It follows that the identity map (V,|-||1) = (V,]|-]|2) is also a continuous linear



operator. In other words, we have a positive constant D such that ||v|l2 < D||v]y
for all v in V. In other words, the two norms are equivalent.

Closed Graph Theorem

Given normed linear spaces V and W, we can form the linear space V& W
which consists of pairs (v, w) of vectors in V' and W.

Exercise: Define ||(v,w)|| = ||v]lv + ||w|lw and check that this gives a norm on
Vew.

Thus, V @& W is a normed linear space in a natural way.

Exercise: The natural maps iy : V. — V & W given by iy (v) = (v,0) and
my V@O W — V given by my ((v,w)) = v are bounded linear maps.

The same applies to the natural maps iy and 7wy for W as well.

Exercise: Given a sequence (v,,wy,) in V & W, check that it is Cauchy if and
only if v, and w, are separately Cauchy sequences.

It follows that V @ W is a Banach space if V and W are Banach spaces. (The
converse is also true. If V @ W is a Banach space then each of V and W are
Banach spaces. We will see one possible proof of this below!)

Exercise: A subspace W of a Banach space V acquires an induced normed
linear space structure. Show that W is complete with respect to this norm if
and only if W is closed in V.

One way to “construct” a linear subspace of V @ W is as the graph I'j, of a
linear transformation L : V' — W; the space I';, consists of pairs of vectors of
the form (v, L(v)). We note that there is a natural map L : V — 'y, given by
v+ (v, L(v)). We note that 7y o L = 1y, so that L is one-to-one and onto.
Further, we note that

[ollv < [lollv+IL()[[w = [[(v, L))

Equivalently, the map (my ), is a continuous map I', — V. Now, if ' is a
closed subspace of V @ W | then, as seen above, it is also a Banach space. By the
results of the previous section, we see that L : V — I';, is then continuous. We
note that L = myy o L and my is continuous. Hence, L too is then continuous.

In other words, if the graph I';, of a linear transformation is a closed subspace
of V@& W, then L is continuous.

Exercise: Show that if L is continuous, then the graph I'y, is closed. (Hint: If
(vn, L(vy)) is a Cauchy sequence in I'y,, then v, converges to a v in V.)

This equivalence between the continuity of the linear transformation L and the
closed-ness of its graph I'y, is called the closed graph theorem.



Uniform Boundedness and applications

Suppose that we are given a collection L; : V. — W for ¢ € I of continuous
linear transformations. Further, assume that for every v in V', the sequence
{L;(v) : i € I} in W is bounded. We claim that the collection of norms
{|| L] : @ € I} is bounded.

To prove this consider the subset X of V' which consists of all those v in V' such
that | L;(v)||w < k for all ¢ € I. By assumption, we see that V is the union of
Xk

Exercise: Show that X is a closed subset of V. (Hint: It is the intersection of
the closed sets L' (Bw (0,k)) as i varies over 1.)

By the Baire category theorem, if V' is a Banach space, then at least one Xy,
has a non-empty interior. In other words, there is a v in V' and an r > 0 so that
By (v,r) is contained in Xj. This means that

ILi(2)|| < [[Li(v +2) || + [[Li(o)]| < 2k if [Jz]| <7

Tt follows that ||L;|| < 2k/r for all n and for all i € I..

One case when we obtain a bounded collection is when we have L, (v) is a Cauchy
sequence or a convergent sequence. So suppose that L, (v) converges some L(v)
for each v in V.

Exercise: Show that L is a linear operator from V' to W. (Hint: Each L,, is
linear.)

Exercise: Show that L is a bounded linear operator from V' to W. (Hint: Check
that the uniform bound for ||L,|| is also a bound for the norm of L.)

In other words, if a sequence of bounded linear operators converges pointwise to
an operator L, then it is also a bounded linear operator.

Exercise: Let B be a subset of V' so that for every linear functional f : V — C,
the image of B is bounded. Show that B is a bounded subset of V. (Hint: Apply
uniform boundedness to the collection B of linear operators on V*.)
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