
The Baire Category Theorem and Applications

There are a number of contexts where we would like a certain set-theoretic
property to imply a more geometric, topological or analytic statement. For
example, if L : V →W is a 1-1 onto map of Banach spaces and L is continuous,
does this mean that it is an isomorphism? In other words, is it “automatic” that
the inverse is continuous? What properties of a subset Z ⊂ X × Y will ensure
that it is the graph is a continuous map from X to Y ? In what cases can we
assert that if a limit of functions exists point-wise then the limiting values give
a nice function? To give an example of a different kind, if ln is a sequence of
lines in the plane, how can I show that there is a point in the plane that does
not lie on any of these lines?

The Baire category theorem is a useful result in order to answer such questions. It
states if Un is a sequence of dense open sets in complete metric space (X, d), then
the intersection of these sets is dense in X; in other words, the set G = ∩nUn is
dense in X.

To prove this, we will show that G meets every open set in X. In fact, it is
enough to show that G meets the open ball BX(x, r) = {y | d(x, y) < r} for
every x in X and r > 0. (In this section, given a normed linear space V we
use BV (v, r) to denote the open ball consisting of all vectors w in W such that
‖w − v‖ < r.)

Exercise: For any s such that 0 < s < r show that the closure BX(x, s) is
contained in BX(x, r). (Hint: Note that if yn satisfy d(x, yn) < s and yn converge
to z, then d(x, z) ≤ s.)

Since U1 is dense in X, the intersection U1 ∩BX(x, r/2) is non-empty. Moreover,
both these sets are open. Hence there is an x1 and an 0 < r1 ≤ r/2 so that
BX(x1, r1) is contained in the intersection; in other words

BX(x1, r1) ⊂ U1 ∩BX(x, r/2)

Exercise: Show that there is a sequence of elements xn in X and rn so that
0 < rn+1 ≥ rn/2 so that

BX(xn+1, rn+1) ⊂ Un+1 ∩BX(xn, rn/2)

(Hint: Use induction on n and the fact that Un is open and dense.)

Exercise: Show that xk+p lies in BX(xk, rk/2) for all p ≥ 0. (Hint: Use
induction on p.)

Exercise: Show that (xn) is a Cauchy sequence. (Hint: Use induction to prove
that rn ≤ r/2n.)

Since X is a complete metric space, it follows that (xn) converges to a point y
in X.
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Exercise: Show that y lies in BX(xk, rk/2) for any k. (Hint: Note that y is the
limit of (xk+p) for p ≥ 0.)

As seen above, this means that y lies in BX(xk, rk) and thus in Uk for every k.
In other words, y lies in G. We also note that y lies in BX(x, r/2) since each
xk lies in this closed set. It follows that y lies in BX(x, r) as well. This proves
what we want to prove.

In applications, this result is often used in the following form. Let Xn be a
sequence of closed sets in a complete metric space (X, d) such that X = ∪nXn;
in other words, X is the union of the sets Xn. We then claim that the interior
of at least one Xn is non-empty. We can prove this by contradiction as follows.

Suppose that Xn has empty interior for all n. It follows that the complement
Un = X \Xn$ of Xn is open and dense in X for all n. It follows that G = ∩nUn

is dense in X. In particular, G is non-empty. However, X \G = ∪nXn = X. So
this is a contradiction.

Open Mapping Theorem

Given a bounded linear map L : V →W between Banach spaces, we show that,
if L is onto then image of the unit ball under L contains an open ball in W . In
other words, there is a c > 0 so that the open ball BW (0, c) of radius c in W is
contained in the image L(BV (0, 1)) of the unit ball in V .

First, we will show that L (BV (0, 1)) contains BW (0, d) for a suitable d > 0.
This will use the fact that W is complete and the Baire category theorem.

Secondly, we will use the completeness of V to show if BW (0, d) is contained in
L (BV (0, 1)) for a suitable d, then L (BV (0, 1)) contains BW (0, d/4).

To see the first part, we note that saying L is surjective is the same as saying
that the union of the sets L (BV (0, n)), as n varies over positive integers, is
all of W . Note that these are not closed sets, so the Baire category theorem
does not apply directly. However, we note that W is also the union of the sets
L (BV (0, n)) as n varies.

Exercise: Show that there is a y inW and a r > 0 so that L (BV (0, 1)) contains
BW (y, r). (Hint: Use the Baire category theorem and note that L (BV (0, n)) is
the same as nL (BV (0, 1)).)

Exercise: If y lies in L (BV (0, 1)), then −y also lies in L (BV (0, 1)). (Hint: L
is a linear operator.)

Exercise: Show that if BW (y, r) is contained in L (BV (0, 1)), then BW (0, r) is
contained in 2L (BV (0, 1)). Hint: Note that

L (BV (0, 1)) + L (BV (0, 1)) ⊂ L (BV (0, 2))

It follows that BW (0, d) is contained in L (BV (0, 1)) if d = r/2.
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We now move to the second part where we assume that BW (0, d) is contained in
L (BV (0, 1)).

Exercise: Given w in BW (0, d/2n), show that there is a x in BV (0, 1) such
that 2nw − L(x) lies in BW (0, d/2). (Hint: 2nw lies in BW (0, d) which is in the
closure of L(B(0, 1)).)

Now start with any z in BW (0, d/4). Applying the above exercise once, we find
x1 ∈ BV (0, 1) so that 4z−L(x1) lies in BW (0, d/2). We now put z1 = z−L(x1/4)
and note that z1 lies in BW (0, d/8). So we can apply the exercise once again
to find x2 in BV (0, 1) so that 8z1 − L(x2) lies in BW (0, d/2. We then put
z2 = z1 − L(x2/8). We note that z2 = z − L(x1/4 + x2/8) and z2 lies in
BW (0, d/16.

Repeating this, we find zn = z − L(x1/4 + · · · + xn/2n+1) so that zn lies in
BW (0, d/2n+2); moreover, xi lie in BV (0, 1). Applying the exercise, we find
xn+1 in BV (0, 1) so that 2n+2zn − L(xn+1) lies in BW (0, d/2). We then put
zn+1 = zn − L(xn+1/2n+2). We again see that zn+1 = z − L(x1/4 + · · · +
xn/2n+1 + xn+1/2n+2), and zn+1 lies in BW (0, d/2n+3).

Continuing this way, we produce xn in BV (0, 1) for all n so that putting zn =
z − L(x1/4 + · · ·+ xn/2n+1) we have zn lies in BW (0, d/2n+2).

Since V is a Banach space, the series
∑

n xn/2n+1 converges to an element x of
BV (0, 1/2). Since L is continuous, we see that L(x1/4+ · · ·+xn/2n+1) converges
to L(x) as n goes to infinity. On the other hand, we see that L(x1/4 + · · · +
xn/2n+1) converges to z as n goes to infinity by construction. Hence, we see
that z = L(x). Now, BV (0, 1/2) is contained in BV (0, 1). So, we see that z is in
L(BV (0, 1)).

This completes the proof of the open mapping theorem.

Invertibility of continuous isomorphisms

Given a continuous linear operator L : V → W between Banach spaces which
is one-to-one and onto. The usual theory about linear maps shows that there
is a linear map M : W → V so that M ◦ L = 1V and L ◦M = 1W . Since L is
continuous, the open mapping theorem shows that L is open. Hence, there is
a c > 0 so that BW (0, c) ⊂ L(BV (0, 1)); equivalently M(BW (0, c)) ⊂ BV (0, 1).
This proves that M is bounded since ‖Mw‖ ≤ (1/c)‖w‖ for all w in W .

In other words, a continuous linear operator between Banach spaces which is
one-to-one and onto has a continuous inverse.

One can apply this as follows to a pair of norms ‖·‖1 and ‖·‖2 on V . Suppose that
both norms make V into a Banach space. Moreover, let us assume that there is
a positive constant C such that ‖v‖1 ≤ C‖v‖2 for all v in V . The identity map
(V, ‖·‖2) → (V, ‖·‖1) is then a continuous one-to-one and onto linear operator.
It follows that the identity map (V, ‖·‖1)→ (V, ‖·‖2) is also a continuous linear
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operator. In other words, we have a positive constant D such that ‖v‖2 ≤ D‖v‖1
for all v in V . In other words, the two norms are equivalent.

Closed Graph Theorem

Given normed linear spaces V and W , we can form the linear space V ⊕W
which consists of pairs (v, w) of vectors in V and W .

Exercise: Define ‖(v, w)‖ = ‖v‖V + ‖w‖W and check that this gives a norm on
V ⊕W .

Thus, V ⊕W is a normed linear space in a natural way.

Exercise: The natural maps iV : V → V ⊕W given by iV (v) = (v, 0) and
πV : V ⊕W → V given by πV ((v, w)) = v are bounded linear maps.

The same applies to the natural maps iW and πW for W as well.

Exercise: Given a sequence (vn, wn) in V ⊕W , check that it is Cauchy if and
only if vn and wn are separately Cauchy sequences.

It follows that V ⊕W is a Banach space if V and W are Banach spaces. (The
converse is also true. If V ⊕W is a Banach space then each of V and W are
Banach spaces. We will see one possible proof of this below!)

Exercise: A subspace W of a Banach space V acquires an induced normed
linear space structure. Show that W is complete with respect to this norm if
and only if W is closed in V .

One way to “construct” a linear subspace of V ⊕W is as the graph ΓL of a
linear transformation L : V → W ; the space ΓL consists of pairs of vectors of
the form (v, L(v)). We note that there is a natural map L̃ : V → ΓL given by
v 7→ (v, L(v)). We note that πV ◦ L̃ = 1V , so that L̃ is one-to-one and onto.
Further, we note that

‖v‖V ≤ ‖v‖V +‖L(v)‖W = ‖(v, L(v))‖

Equivalently, the map (πV )|ΓL
is a continuous map ΓL → V . Now, if ΓL is a

closed subspace of V ⊕W , then, as seen above, it is also a Banach space. By the
results of the previous section, we see that L̃ : V → ΓL is then continuous. We
note that L = πW ◦ L̃ and πW is continuous. Hence, L too is then continuous.

In other words, if the graph ΓL of a linear transformation is a closed subspace
of V ⊕W , then L is continuous.

Exercise: Show that if L is continuous, then the graph ΓL is closed. (Hint: If
(vn, L(vn)) is a Cauchy sequence in ΓL, then vn converges to a v in V .)

This equivalence between the continuity of the linear transformation L and the
closed-ness of its graph ΓL is called the closed graph theorem.
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Uniform Boundedness and applications

Suppose that we are given a collection Li : V → W for i ∈ I of continuous
linear transformations. Further, assume that for every v in V , the sequence
{Li(v) : i ∈ I} in W is bounded. We claim that the collection of norms
{‖Li‖ : i ∈ I} is bounded.

To prove this consider the subset Xk of V which consists of all those v in V such
that ‖Li(v)‖W ≤ k for all i ∈ I. By assumption, we see that V is the union of
Xk.

Exercise: Show that Xk is a closed subset of V . (Hint: It is the intersection of
the closed sets L−1

i (BW (0, k)) as i varies over I.)

By the Baire category theorem, if V is a Banach space, then at least one Xk

has a non-empty interior. In other words, there is a v in V and an r > 0 so that
BV (v, r) is contained in Xk. This means that

‖Li(x)‖ ≤ ‖Li(v + x)‖+ ‖Li(v)‖ ≤ 2k if ‖x‖ < r

It follows that ‖Li‖ < 2k/r for all n and for all i ∈ I..

One case when we obtain a bounded collection is when we have Ln(v) is a Cauchy
sequence or a convergent sequence. So suppose that Ln(v) converges some L(v)
for each v in V .

Exercise: Show that L is a linear operator from V to W . (Hint: Each Ln is
linear.)

Exercise: Show that L is a bounded linear operator from V toW . (Hint: Check
that the uniform bound for ‖Ln‖ is also a bound for the norm of L.)

In other words, if a sequence of bounded linear operators converges pointwise to
an operator L, then it is also a bounded linear operator.

Exercise: Let B be a subset of V so that for every linear functional f : V → C,
the image of B is bounded. Show that B is a bounded subset of V . (Hint: Apply
uniform boundedness to the collection B of linear operators on V ∗.)
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