It is possible that some of you have given the right answer for the wrong reasons. It is possible that some of you have given the wrong answer for the right reasons. Both types should know that knowing the right reasons will prove more useful in the long run!

1. Let ℓ_{1} denote the usual space of absolutely summable sequences of complex numbers. Consider the operator $R: \ell_{1} \rightarrow \ell_{1}$ defined by (right shift)

$$
R\left(\left(a_{1}, a_{2}, \ldots\right)\right)=\left(0, a_{1}, a_{2}, \ldots\right)
$$

Mark the following statements as True/False.
(d) The spectrum of R is the singleton set $\{0\}$.
(c) The operator R has no non-zero eigenvalues.
(c) True
(b) 0 is in the spectrum of R.
(a) False
(b) True
(d) False

Solution: One can show that the spectrum of R is the closed unit disk in the complex plane.
2. Consider the vector space $\mathbb{C}[T]$ of polynomials in one variable over the field of complex numbers with norms given by

$$
\|P\|_{C}=\sup _{t \in[0,1]}|P(t)| \quad \text { and } \quad\|P\|_{D}=\sup _{t \in[0,1 / 2]}|P(t)|
$$

Let $P_{n}(T)=T^{n}$. Mark the following statements as True/False.
(1 mark) (a) For each $t \in[0,1]$ the sequence $P_{n}(t)$ of complex numbers converges in \mathbb{C}.
(a) True
(1 mark) (b) The sequence P_{n} is a Cauchy sequence on $\mathbb{C}[T]$ with respect to the norm $\|\cdot\|_{C}$.
(b) False
(1 mark)
(c) The sequence P_{n} is a Cauchy sequence on $\mathbb{C}[T]$ with respect to the norm $\|\cdot\|_{D}$.
(c) True
(1 mark) (d) The linear functional $\mathbb{C}[T] \rightarrow \mathbb{C}$ defined by $P \mapsto \int_{0}^{1} P(t) d t$ is a continuous linear functional with respect to the norm $\|\cdot\|_{C}$.
(d) True
(1 mark) (e) The sequence of values $\int_{0}^{1} P_{n}(t) d t$ converges in \mathbb{C}.
(e) True

Solution: The sequence $P_{n}(t)$ converges pointwise to 0 for all $t \in[0,1)$ and to 1 for $t=1$. This limit is not a continuous function, hence the convergence is not in $\|\cdot\|_{C}$. The integral is a bounded linear functional of norm 1 .
The integrals are $1 /(n+1)$ which converge to 0 .
3. Let ℓ_{2} denote the space of square summable sequences of complex numbers with the usual Hermitian inner-product $\langle a, b\rangle=\sum_{n=1}^{\infty} a_{n} \overline{b_{n}}$. Mark the following statements as True/False.
(1 mark) (a) Given a linear functional $f: \ell_{2} \rightarrow \mathbb{C}$, there is an element v_{f} in ℓ_{2} so that for all w in ℓ_{2} we have $f(w)=\left\langle w, v_{f}\right\rangle$.
(a) False
(1 mark) (b) The above statement (a) is only true if f is also continuous.
(b) True
(1 mark) (c) The above statement (a) is only true if f takes values in \mathbb{R}.
(c) False
(1 mark) (d) Given a linear functional $f: \ell_{2} \rightarrow \mathbb{R}$ there is a linear functional $g: \ell_{2} \rightarrow \mathbb{C}$ so that $f=\Re(g)$ (here $\Re: \mathbb{C} \rightarrow \mathbb{R}$ denotes the real part).
(d) True
(1 mark) (e) The above statement (d) is only true if f is also continuous.
(e) False
4. Let \mathbb{C}^{∞} be the space of all sequences $a=\left(a_{1}, a_{2}, \ldots, 0, \ldots,\right)$ of complex numbers that are eventually 0 . Consider the usual norms

$$
\|a\|_{1}=\sum_{n=1}^{\infty}\left|a_{n}\right| \quad \text { and } \quad\|a\|_{2}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}
$$

We study the linear transformation T from \mathbb{C}^{∞} to itself given by

$$
T\left(\left(a_{1}, a_{2}, \ldots\right)\right)=\left(a_{1}, a_{2} / 2, a_{3} / 3, \ldots\right)
$$

Find the constants below or indicate that no such constant exists.
(a) Find a constant C_{1} so that

$$
\|a\|_{2} \leq C_{1}\|a\|_{1}
$$

(a) $\quad C_{1}=1$

Solution: Note that for any finite sequence $\left(a_{1}, \ldots, a_{N}\right)$ we have

$$
\left(\sum_{n=1}^{N}\left|a_{n}\right|\right)^{2}=\sum_{n=1}^{N} \sum_{k=1}^{N}\left|a_{n}\right|\left|a_{k}\right| \geq \sum_{n=1}^{N}\left|a_{n}\right|^{2}
$$

It follows that $C_{1}=1$ will work.
(b) Find a constant C_{2} so that

$$
\|a\|_{1} \leq C_{2}\|a\|_{2}
$$

(b) None

Solution: Consider $v^{(n)}=(1,1 / 2, \ldots, 1 / n, 0, \ldots)$. We know that $\left\|v^{(n)}\right\|_{2} \leq$ $\pi / \sqrt{6}$ for all n. However, $\left\|v^{(n)}\right\|$ goes to infinity as n goes to infinity. So there is no such constant C_{2}.
(c) Find a constant D_{1} so that

$$
\|T(a)\|_{1} \leq D_{1}\|a\|_{1}
$$

(c) $\quad D_{1}=1$

Solution: We note that

$$
\sum_{n=1}^{N}\left|a_{n} / n\right| \leq \sum_{n=1}^{N}\left|a_{n}\right|
$$

It follows that $D_{1}=1$ will work.
(1 mark) (d) Find a constant D_{2} so that

$$
\|T(a)\|_{2} \leq D_{2}\|a\|_{2}
$$

(d) $\quad D_{2}=1$

Solution: We note that

$$
\sum_{n=1}^{N}\left|a_{n} / n\right|^{2} \leq \sum_{n=1}^{N}\left|a_{n}\right|^{2}
$$

It follows that $D_{2}=1$ will work.
(1 mark)
(e) Find a constant D_{3} so that

$$
\|T(a)\|_{1} \leq D_{3}\|a\|_{2}
$$

(Warning: Note the subscripts!)
(e) $D_{3}=\pi / \sqrt{6}$

Solution: By the Cauchy-Schwarz inequality

$$
\left(\sum_{n=1}^{N}\left|a_{n} / n\right|\right)^{2} \leq\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right) \cdot\left(\sum_{n=1}^{N}|1 / n|^{2}\right) \leq \frac{\pi^{2}}{6} \cdot\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right)
$$

So $D_{3}=\pi / \sqrt{6}$ will work.
(1 mark)
(f) Find a constant D_{4} so that

$$
\|T(a)\|_{2} \leq D_{4}\|a\|_{1}
$$

(Warning: Note the subscripts!)

$$
\text { (f) } \quad D_{4}=1
$$

Solution: By (a) above and by (b) above, we have

$$
\|T(a)\|_{2} \leq C_{1}\|T(a)\|_{1} \text { and }\|T(a)\|_{1} \leq D_{1}\|a\|_{1}
$$

It follows that if $D_{4}=C_{1} \cdot D_{1}$

$$
\|T(a)\|_{2} \leq D_{4}\|a\|_{1}
$$

