Solutions to Quiz 5

1. Let ℓ_{2} denote the usual space of square summable series of complex numbers.

Consider the linear operator $T: \ell_{2} \rightarrow \ell_{2}$ defined by

$$
T\left(\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)\right)=\left(a_{1}, a_{2} / 2, \ldots, a_{n} / n, \ldots\right)
$$

Let $\mathbf{1}$ denote the identity operator.
(1 mark)
(a) What is $\|T\|$?
(1 mark)
(b) Is the map T invertible?
(1 mark)
(c) Is the map $(1 / 2) T \mathbf{- 1}$ invertible?
(1 mark)
(d) If z is a complex number which is not real, then is $T-z \mathbf{1}$ invertible?
(1 mark)
(e) Is there a real number a in $[0,1]$ such that $T-a \mathbf{1}$ is invertible?

Solution: Much of the following is in the last section of the notes on "Invertible Operators and Spectrum".
Given a sequence $\left(b_{n}\right)$, the operator $P: \ell_{2} \rightarrow \ell_{2}$ defined by

$$
P\left(\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)\right)=\left(b_{1} a_{1}, b_{2} a_{2}, \ldots, b_{n} a_{n}, \ldots\right)
$$

is a bounded linear operator if and only if $\sup _{n=1}^{\infty}\left|b_{n}\right|$ is bounded. Now the linear inverse is given by

$$
Q\left(\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)\right)=\left(a_{1} / b_{1}, a_{2} / b_{2}, \ldots, a_{n} / b_{n}, \ldots\right)
$$

For P to be invertible, Q has to be bounded. Hence, it is necessary and sufficient that $\sup _{n=1}^{\infty}\left|1 / b_{n}\right|$ is bounded. This is the same as the condition $\inf _{n=1}^{\infty}\left|b_{n}\right|>0$. Now we can easily answer the last four parts.
We have $\inf _{n=1}^{\infty} 1 / n=0$. So T is not invertible.
We have $\inf _{n=1}^{\infty}\left|\frac{1}{2 n}-1\right| \neq 0$. So $(1 / 2) T-\mathbf{1}$ is invertible.
We have $\inf _{n=1}^{\infty}|1 / n-z| \geq|y|$ where y is the imaginary part of z. So if $y \neq 0$, then this is invertible. In other words, if z is not real, the $T-z \mathbf{1}$ is invertible.
Take a number like $a=2 / 3$ which is different from $1 / n$ for all n and not 0 . Then $\inf _{n=1}^{\infty}|1 / n-2 / 3|=1 / 6$, so $T-(2 / 3) \mathbf{1}$ is invertible.
Finally, to calculate the norm, we note that

$$
\left\|A\left(\left(a_{1}, \ldots, a_{n}, \ldots\right)\right)\right\|_{2}^{2}=\sum_{n=1}^{\infty}\left|a_{n} b_{n}\right|^{2} \leq \sup _{n=1}^{\infty}\left|b_{n}\right|^{2} \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \leq \sup _{n=1}^{\infty}\left|b_{n}\right|^{2}\left\|\left(a_{n}\right)\right\|_{2}^{2}
$$

So $\|A\| \leq \sup _{n=1}^{\infty}\left|b^{n}\right|$. On the other hand we have

$$
P((0, \ldots, 0, \stackrel{n}{1,0}, \ldots))=\left(0, \ldots, 0, \stackrel{n}{b_{n}}, 0, \ldots\right)
$$

and

$$
\|(0, \ldots, 0, \stackrel{n}{c}, 0, \ldots)\|_{2}=|c|
$$

Hence $\|P\| \geq\left|b_{n}\right|$. It follows that $\|P\|=\sup _{n=1}^{\infty}\left|b_{n}\right|$. Thus, $\|T\|=1$.

