Solutions to Quiz 4

1. Let ℓ_{2} denote the usual space taken as an inner product space with the $\|\cdot\|_{2}$ norm and the associated inner product. Let \mathbb{R}^{N} be the subspace consisting of vectors of the form $\left(a_{1}, \ldots, a_{N}, 0, \ldots\right) ;$ i. e. the vectors which have component 0 beyond the N-th component. Let \mathbb{R}^{∞} be the union of \mathbb{R}^{N} over all N.

Consider the linear functional $f: \mathbb{R}^{\infty} \rightarrow \mathbb{R}$ defined on \mathbb{R}^{N} by

$$
f\left(\left(a_{1}, \ldots, a_{N}, 0, \ldots\right)\right)=\sum_{n=1}^{N} a_{n} / n
$$

(1 mark)
(1 mark)
(1 mark)
(1 mark)
(1 mark)
(a) Find the vector v_{N} in \mathbb{R}^{N} such that $f(a)=\left\langle a, v_{N}\right\rangle$ for every a in \mathbb{R}^{N}.

Solution: The vector $v_{N}=(1,1 / 2, \ldots, 1 / / N, 0, \ldots)$ has this property. It is the unique such vector.
(b) What is $\left\|v_{N}\right\|_{2}$?

Solution: The norm $\left\|v_{N}\right\|=\sqrt{\sum_{n=1}^{N}(1 / n)^{2}}$.
(c) Does the sequence v_{N} converge in \mathbb{R}^{∞} with respect to $\|\cdot\|_{2}$?

Solution: No. The limit does not lie in \mathbb{R}^{∞} since all components of the limit must be non-zero.
(d) Does the sequence v_{N} converge in ℓ_{2} ?

Solution: Yes. The difference $v_{M}-v_{N}$ has norm $\sqrt{\sum_{n=N+1}^{M} 1 / n^{2}}$ which is small for N, M sufficiently large. In fact the limit is the vector

$$
v=(1,1 / 2,1 / 3, \ldots)
$$

For the next part note that, $\left\|v_{n}\right\|$ converges to $\|v\|=\|f\|$ as n goes to infinity by the Riesz representation theorem.
(e) Find a sequence w_{n} of unit vectors in ℓ_{2} such that $f\left(w_{n}\right)$ goes to $\|f\|$ as n goes to infinity.

Solution: If we take the vector $w_{n}=v_{n} /\left\|v_{n}\right\|_{2}$, then w_{n} is a unit vector. Moreover,

$$
f\left(w_{n}\right)=\left\langle w_{n}, v_{n}\right\rangle=\frac{\left\langle v_{n}, v_{n}\right\rangle}{\left\|v_{n}\right\|_{2}}=\left\|v_{n}\right\|_{2}
$$

This converges to $\|f\|$.

