Solutions to Quiz 4

1. Let ℓ_2 denote the usual space taken as an inner product space with the $\|\cdot\|_2$ norm and the associated inner product. Let \mathbb{R}^N be the subspace consisting of vectors of the form $(a_1, \ldots, a_N, 0, \ldots)$; i. e. the vectors which have component 0 beyond the N-th component. Let \mathbb{R}^∞ be the union of \mathbb{R}^N over all N.

Consider the linear functional $f : \mathbb{R}^{\infty} \to \mathbb{R}$ defined on \mathbb{R}^N by

$$f((a_1,\ldots,a_N,0,\ldots)) = \sum_{n=1}^N a_n/n$$

(1 mark) (a) Find the vector v_N in \mathbb{R}^N such that $f(a) = \langle a, v_N \rangle$ for every a in \mathbb{R}^N .

Solution: The vector $v_N = (1, 1/2, \ldots, 1/N, 0, \ldots)$ has this property. It is the unique such vector.

(1 mark) (b) What is $||v_N||_2$?

Solution: The norm
$$||v_N|| = \sqrt{\sum_{n=1}^{N} (1/n)^2}$$
.

(1 mark) (c) Does the sequence v_N converge in \mathbb{R}^{∞} with respect to $\|\cdot\|_2$?

Solution: No. The limit does not lie in \mathbb{R}^{∞} since all components of the limit must be non-zero.

(1 mark) (d) Does the sequence
$$v_N$$
 converge in ℓ_2 ?

Solution: Yes. The difference $v_M - v_N$ has norm $\sqrt{\sum_{n=N+1}^M 1/n^2}$ which is small for N, M sufficiently large. In fact the limit is the vector

$$v = (1, 1/2, 1/3, \dots)$$

For the next part note that, $||v_n||$ converges to ||v|| = ||f|| as n goes to infinity by the Riesz representation theorem.

(1 mark) (e) Find a sequence w_n of *unit* vectors in ℓ_2 such that $f(w_n)$ goes to ||f|| as n goes to infinity.

Solution: If we take the vector $w_n = v_n / ||v_n||_2$, then w_n is a unit vector. Moreover,

$$f(w_n) = \langle w_n, v_n \rangle = \frac{\langle v_n, v_n \rangle}{\|v_n\|_2} = \|v_n\|_2$$

MTH402

This converges to ||f||.