
Spaces of Functions

The fundamental space of functions that we know is the space of polynomials.
The vector space of (complex valued) polynomials in the variable x can be
identified with the space C∞ via the map

a = (a0, . . . , aN , 0, . . . ) 7→ Pa(x) =
N∑

k=0
akx

k

(Note that for convenience of notation, we use sequences indexed starting from 0
in this section.)

We can consider this as a function [0, 1]→ C by sending t to Pa(t). Let us define:

‖a‖C[0,1] = sup
t∈[0,1]

|Pa(t)|

Exercise: Check that ‖a‖C[0,1] is a norm on C∞.

We will study the completion V of C∞ and show that it can be identified with
the space of (complex valued) continuous functions on C[0, 1] (this explains the
notation!). In order to do this, we must show:

1. Given v in V we can define a function fv : [0, 1]→ C.

2. The map v 7→ fv is one-to-one.

3. The function fv is continuous.

4. Given a continuous function f : [0, 1]→ C, there is a v in V so that f = fv.

In addition, this result can, with suitable modifications be generalised to other
compact subsets of R. With some additional modifications, we can even generalise
it to compact subsets of Rn. However, it is worth pointing out that the case of
polynomial functions on compact subsets of C is quite different! One important
reason is that a polynomial function of two real variables x and y is quite
different from a polynomial function of the single complex variable z = x+ ιy.
In particular, |z|2 = x2 + y2 is a polynomial function of x and y but is not a
polynomial function of z. We will see, during the course of the proof, why this
is important.

Evaluation as a linear functional

Given t in [0, 1], we have the linear functional et : C∞ → C defined by

et(a) = Pa(t) =
∞∑

k=0
akt

t

note that the sum on the right-hand side is finite since a = (a0, . . . , aN , 0, . . . ) is
a sequence which consists of 0’s beyond some index.
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Exercise: Show that et is a linear functional on C∞ with norm ‖et‖ ≤ 1 with
respect to the norm ‖·‖C[0,1] on C∞.

Since V is the completion of C∞ with respect to this norm, the continuous linear
functional extends to a linear functional et : V → C with norm 1. In particular,
for any vector v in V , and any t in [0, 1], we have a complex number et(v).

We now define the map V → Map([0, 1],C) given by v 7→ fv where fv(t) = et(v).
It is clear that a in C∞ is associated with the polynomial function Pa by this
assignment.

V as a space of functions

Given an element v in V , we wish to show that, if fv(t) = 0 for all t in [0, 1],
then v is itself 0. Now, v is determined by sequence a(n) of elements of C∞
which converges to v in the norm ‖·‖C[0,1]. Thus, we would like to prove that
for all ε > 0, there is an N so that ‖a(n)‖ < ε for n ≥ N . To ease the notation,
we use Pn to denote the polynomial function associated with a(n) as above; we
also use the notation ‖·‖ to denote the norm ‖·‖C[0,1].

Since a(n) is a Cauchy sequence, there is a natural number M0 so that ‖a(n) −
a(m)‖ < ε/3 for n,m ≥ M0. Applying the definition of this norm we see that
|Pn(y)− Pm(y)| < ε/3 for all y in [0, 1].

Since a(n) converges to v and for each t in [0, 1], the map et is a continuous linear
functional on V and et(v) = 0, there is an Nt ≥M0 so that |et(a(n))| < ε/3 for
all n ≥ Nt. Equivalently, by definition of et, we have |Pn(t)| < ε/3 for n ≥ Nt.

Now PNt
is a polynomial function and thus it is continuous. It follows that there

is a δt > 0 so that |PNt
(y)− PNt

(t)| < ε/3 for all y in the interval (t− δt, t+ δt).

Exercise: Show that for all n ≥ Nt, and for all y in the interval (t− δt, t+ δt)
we have ‖Pn(y)‖ < ε. (Hint: Combine the three inequalities using the triangle
inequality!)

Since [0, 1] is a compact set, there is a finite collection t1, . . . , tr of points in [0, 1]
so that the union of the intervals (ti − δti

, ti + δti
) cover the entire interval [0, 1].

Now, put N = maxr
i=1 Nti .

Exercise: Show that for all n ≥ N , and for all y in the interval [0, 1] we have
‖Pn(y)‖ < ε. (Hint: For each y choose an appropriate ti and apply the previous
exercise.)

It follows that ‖a(n)‖ < ε for all n ≥ N as required.
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Continuity of fv

We want to prove that given t0 in [0, 1] and ε > 0, there is a δ > 0 so that
|fv(t)− fv(t0)| ≤ ε for all t in (t0 − δ, t0 + δ).

As in the previous paragraph, let a(n) be a sequence of elements of C∞ which
converges to v in the norm ‖·‖C[0,1]; to simplify notation we use Pn to denote
the polynomial associated with a(n). Continuing as before, let M0 be such that
that ‖a(n) − a(m)‖ < ε/3 for n,m ≥ M0. Applying the definition of this norm
we see that |Pn(y)− Pm(y)| < ε/3 for all y in [0, 1].

Since et0 is a continuous linear functional, there is an N ≥M0 so that |et0(v)−
et0(a(n))| < ε/3 for all n ≥ N . We have et0(a(n)) = Pn(t0) and et0(v) = fv(t0).

Since PN is a continuous function of t, there is a δ > 0 so that |PN (t)−PN (t0)| <
ε/3 for all t in (t0 − δ, t0 + δ).

Exercise: Combine the above inequalities to show that |Pn(t)− fv(t0)| < ε for
all n ≥ N and t in (t0 − δ, t0 + δ).

By the continuity of et, we see that fv(t) = et(v) is the limit of Pn(t) = et(a(n)) as
n goes to infinity. The limit of the above inequalities gives us |fv(t)− fv(t0)| ≤ ε
for all t in (t0 − δ, t0 + δ) as required.

Real and Imaginary parts

An element a in C∞ can be separated into real and imaginary parts by writing
a = u +

√
−1v where u and v lie in R∞. Moreover, since t in [0, 1] is a real

number Pu(t) is the real part of Pa(t) and Pv(t) is the imaginary part of Pa(t).
Thus, if we prove that the completion VR of R∞ has image equal to the real
valued continuous functions on [0, 1], then it can be deduced that the image V
is equal to the complex valued continuous functions on [0, 1]. Thus, we will now
prove the statement for real continuous functions.

The reason that this is a useful reduction is as follows. For a real valued function
f , we define f+ = max{f, 0} and f− = −min{f, 0}; these are non-negative
functions. Moreover, f = f+ − f− and |f | = f+ + f−. It follows that f+ =
(f+|f |)/2. Now, if f and g are two functions, then max{f, g} = max{f−g, 0}+g
and min{f, g} = −max{−f,−g}. Thus, for real-valued functions, if we want
to exhibit the latter two functions in a certain vector space of functions, it is
enough if we should that for every f in that vector space, the function |f | is in
that vector space of functions.

Secondly, for real-valued functions, |f | =
√
f2. So, what we really need to show

is that if f is in the vector space then so is
√
f2.
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Polynomials of polynomials

Exercise: If P is a polynomial function of n variables and Q1, . . . , Qn are
polynomial functions of m variables then P (Q1, . . . , Qn) is a polynomial function
of m variables.

This can be used to show:

Exercise: If f lies in the image of VR and P is a real polynomial function of
one variable, then P (f) lies in the image of VR.

Now, suppose that Pn is a sequence of polynomials converging uniformly in [0, 1]
to a function g and f takes values in [0, 1].

Exercise: Show that Pn(f) converges uniformly to g(f).

It follows that if g lies in VR and f takes values in [0, 1], then g(f) is also in VR.
This will allow us to apply the following construction.

Square roots

We now produce a sequence of polynomials which converge to the function
s(t) =

√
t for t in [0, 1].

Let u1(t) = t and we inductively define for n ≥ 1:

un+1(t) = un(t) + t− (un(t))2

2

Exercise: Check by induction that if P is a polynomial then so is P +(t−P 2)/2.

Exercise: Suppose that if 0 ≤ a ≤
√
t ≤ 1, then (t − a2)/2 ≤

√
t − a. (Hint:

Note that
√
t+ a ≤ 2.)

Exercise: Check by induction that 0 ≤ un+1(t) ≤
√
t for t in [0, 1].

Thus, un+1 is an increasing sequence of polynomials bounded above by s(t). Let
u(t) = supn un(t).

Exercise: Check that t = u(t)2. (Hint: Take limits in the above equation.)

In other words, we have shown that s(t) is the pointwise limit of the polynomials
un(t) for t in [0, 1]. We want to show that this convergence is in norm. In other
words, given ε > 0 we want to find N so that |un(t) − s(t)| < ε for all n ≥ N
and for all t in [0, 1]. This is a consequence of the following three features of this
situation:

• The functions s(t) and un(t) are continuous.

• The values un(t) increase to s(t) as n increases.

• The interval [0, 1] is compact.
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The idea is to find for each point t in [0, 1]

• A µt for which |s(y)− s(t)| < ε/3 if y lies in (t− µt, t+ µt).

• An Nt for which uNt
(t) > s(t)− ε/3.

• A τt for which |uNt
(y)− uNt

(t)| < ε/3 if y lies in (t− τt, t+ τ + t).

We then take δt to be the minimum of µt and τt. Now, we use compactness of
[0, 1] to find a finite collection t1, . . . , tr so that the union of (ti − δti , ti + δti)
covert [0, 1]. Let N be greater than or equal to all the Nti

.

Exercise: Combine the above inequalities to check that |un(y)− s(y)| < ε for
all y in [0, 1] and for all n ≥ N .

This shows that s(t) =
√
t is a uniform limit of polynomials in [0, 1].

Given that a certain function f lies in VR we want to show that |f | lies in VR.
Suppose that a = ‖f‖ is the supremum of all values of f . Then f2/a2 takes
values in [0, 1]. Combining the results of the previous two subsections, we can
then show that

√
f2/a2 is in VR. This means that |f | = a

√
f2/a2 is in VR. As

seen in two subsections above, this means that if f and g are in VR then so are
min{f, g} and max{f, g}.

Min-Max approach

Given a continuous function f : [0, 1]→ R we want to approximate it by functions
in VR. More precisely, given ε > 0 we want to find a function g in VR so that
|f(t)− g(t)| < ε for all t in [0, 1]. We think of this condition as

f(t)− ε < g(t) < f(t) + ε

and try to satisfy each side “separately”.

Exercise: For every chosen pair of points t, s in [0, 1] we can find a polynomial
Qt,s so that Qt,s(t) = f(t) and Qt,s(s) = f(s). (Hint: If t 6= s, consider
Qt,s = f(s)(x− t)/(s− t) + f(t)(x− s)/(t− s). What about if s = t?)

Now f and Qt,s are continuous on [0, 1] and f(s) = Qt,s(s). So, there is a δt,s so
that |f(a)−Qt,s(a)| < ε for each a in [0, 1] that lies in (s− δt,s, s+ δt,s). Using
compactness of [0, 1], there is a finite collection s1, . . . , sm so that if δi = δt,si

then [0, 1] is contained in the union of the intervals (si − δi, si + δi). We put
ht = minm

i=1 Qt,si
. As seen above ht lies in VR.

Exercise: Check that ht(t) = f(t) and that ht(a) < f(a) + ε for all a in [0, 1].
(Hint: ht is the minimum of functions Qt,si and at least one of these satisfies
this condition at each point of [0, 1].)

Now, ht and f are continuous in [0, 1] and ht(t) = f(t). So, there is a µt so that
|f(a) − ht(a)| < ε for each a in [0, 1] which lines in (t − µt, t + µ + t). Again
using the compactness of [0, 1], there is a finite collection t1, . . . , tn so that if
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µi = µti , then [0, 1] is contained in the union of the intervals (ti − µi, ti + µ+ i).
We put g = maxm

i=1 hti . As seen above g lies in VR.

Exercise: Check that f(a)− ε < g(a) < f(a) + ε for all a in [0, 1]. (Hint: The
second part of the inequality is satisfied by all the hti . For the first part, we
note that g is the maximum of functions hti

and at least one of these satisfies
this condition at each point of [0, 1].)

Thus, we have completed the argument that VR contains all continuous functions
on [0, 1] with values in R. As seen above, the argument for V can be completed
by arguing separately for the real and imaginary parts.

Extensions

The arguments given above can be extended to any compact set K in R by
defining

‖a‖C(K) = sup
x∈K

Pa(x)

as a norm on C∞. We will still need to use the subsection above to find the
square root on the interval [0, 1] as a uniform limit of polynomials on [0, 1]. The
subsection on the composition of polynomials then allows us to show that the
completion is closed under f 7→ |f |. The rest of the proof (Min-Max part) is the
same.

In order to extend the argument to compact sets in Rn, we need to put an order
on monomials tk1

1 · · · tkn
n in order to identify C∞ with C[t1, . . . , tn]. Other than

that the proof will proceed along similar lines.

Warning: One can identify C with R2. However, polynomials with complex
coefficients on R2 are actually polynomials in 2 variables. To think of them
as polynomials in the variable z ∈ C we need to write x = (z + z)/2 and
y = −ι(z−z)/2. With this substitution, these become polynomials with complex
coefficients in two variables z and z. On the other hand, if we take the norm

‖a‖ = sup
|z|≤1

∣∣∣∣∣
n∑

i=0
aiz

i

∣∣∣∣∣
(where z is allowed to take complex values) on C∞, then the completion is quite a
bit smaller than the space of continuous functions on the unit disk. By Montel’s
theorem one can show that this completion consists of those continuous functions
on the unit disk that are analytic in the interior of the unit disk.
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