Spaces of Functions

The fundamental space of functions that we know is the space of polynomials. The vector space of (complex valued) polynomials in the variable x can be identified with the space \mathbb{C}^{∞} via the map

$$a = (a_0, \dots, a_N, 0, \dots) \mapsto P_a(x) = \sum_{k=0}^N a_k x^k$$

(Note that for convenience of notation, we use sequences indexed starting from 0 in this section.)

We can consider this as a function $[0,1] \to \mathbb{C}$ by sending t to $P_a(t)$. Let us define:

$$||a||_{C[0,1]} = \sup_{t \in [0,1]} |P_a(t)|$$

Exercise: Check that $||a||_{C[0,1]}$ is a norm on \mathbb{C}^{∞} .

We will study the completion V of \mathbb{C}^{∞} and show that it can be identified with the space of (complex valued) continuous functions on C[0, 1] (this explains the notation!). In order to do this, we must show:

- 1. Given v in V we can define a function $f_v : [0,1] \to \mathbb{C}$.
- 2. The map $v \mapsto f_v$ is one-to-one.
- 3. The function f_v is continuous.
- 4. Given a continuous function $f:[0,1] \to \mathbb{C}$, there is a v in V so that $f = f_v$.

In addition, this result can, with suitable modifications be generalised to other compact subsets of \mathbb{R} . With some additional modifications, we can even generalise it to compact subsets of \mathbb{R}^n . However, it is worth pointing out that the case of polynomial functions on compact subsets of \mathbb{C} is quite different! One important reason is that a polynomial function of two real variables x and y is quite different from a polynomial function of the single complex variable $z = x + \iota y$. In particular, $|z|^2 = x^2 + y^2$ is a polynomial function of x and y but is not a polynomial function of z. We will see, during the course of the proof, why this is important.

Evaluation as a linear functional

Given t in [0, 1], we have the linear functional $e_t : \mathbb{C}^{\infty} \to \mathbb{C}$ defined by

$$e_t(a) = P_a(t) = \sum_{k=0}^{\infty} a_k t^k$$

note that the sum on the right-hand side is *finite* since $a = (a_0, \ldots, a_N, 0, \ldots)$ is a sequence which consists of 0's beyond some index.

Exercise: Show that e_t is a linear functional on \mathbb{C}^{∞} with norm $||e_t|| \leq 1$ with respect to the norm $|| \cdot ||_{C[0,1]}$ on \mathbb{C}^{∞} .

Since V is the completion of \mathbb{C}^{∞} with respect to this norm, the continuous linear functional extends to a linear functional $e_t : V \to \mathbb{C}$ with norm 1. In particular, for any vector v in V, and any t in [0, 1], we have a complex number $e_t(v)$.

We now define the map $V \to \operatorname{Map}([0,1], \mathbb{C})$ given by $v \mapsto f_v$ where $f_v(t) = e_t(v)$. It is clear that a in \mathbb{C}^{∞} is associated with the polynomial function P_a by this assignment.

V as a space of functions

Given an element v in V, we wish to show that, if $f_v(t) = 0$ for all t in [0, 1], then v is itself 0. Now, v is determined by sequence $a^{(n)}$ of elements of \mathbb{C}^{∞} which converges to v in the norm $\|\cdot\|_{C[0,1]}$. Thus, we would like to prove that for all $\epsilon > 0$, there is an N so that $\|a^{(n)}\| < \epsilon$ for $n \ge N$. To ease the notation, we use P_n to denote the polynomial function associated with $a^{(n)}$ as above; we also use the notation $\|\cdot\|$ to denote the norm $\|\cdot\|_{C[0,1]}$.

Since $a^{(n)}$ is a Cauchy sequence, there is a natural number M_0 so that $||a^{(n)} - a^{(m)}|| < \epsilon/3$ for $n, m \ge M_0$. Applying the definition of this norm we see that $|P_n(y) - P_m(y)| < \epsilon/3$ for all y in [0, 1].

Since $a^{(n)}$ converges to v and for each t in [0, 1], the map e_t is a continuous linear functional on V and $e_t(v) = 0$, there is an $N_t \ge M_0$ so that $|e_t(a^{(n)})| < \epsilon/3$ for all $n \ge N_t$. Equivalently, by definition of e_t , we have $|P_n(t)| < \epsilon/3$ for $n \ge N_t$.

Now P_{N_t} is a polynomial function and thus it is continuous. It follows that there is a $\delta_t > 0$ so that $|P_{N_t}(y) - P_{N_t}(t)| < \epsilon/3$ for all y in the interval $(t - \delta_t, t + \delta_t)$.

Exercise: Show that for all $n \ge N_t$, and for all y in the interval $(t - \delta_t, t + \delta_t)$ we have $||P_n(y)|| < \epsilon$. (Hint: Combine the three inequalities using the triangle inequality!)

Since [0, 1] is a compact set, there is a finite collection t_1, \ldots, t_r of points in [0, 1] so that the union of the intervals $(t_i - \delta_{t_i}, t_i + \delta_{t_i})$ cover the entire interval [0, 1]. Now, put $N = \max_{i=1}^r N_{t_i}$.

Exercise: Show that for all $n \ge N$, and for all y in the interval [0,1] we have $||P_n(y)|| < \epsilon$. (Hint: For each y choose an appropriate t_i and apply the previous exercise.)

It follows that $||a^{(n)}|| < \epsilon$ for all $n \ge N$ as required.

Continuity of f_v

We want to prove that given t_0 in [0,1] and $\epsilon > 0$, there is a $\delta > 0$ so that $|f_v(t) - f_v(t_0)| \le \epsilon$ for all t in $(t_0 - \delta, t_0 + \delta)$.

As in the previous paragraph, let $a^{(n)}$ be a sequence of elements of \mathbb{C}^{∞} which converges to v in the norm $\|\cdot\|_{C[0,1]}$; to simplify notation we use P_n to denote the polynomial associated with $a^{(n)}$. Continuing as before, let M_0 be such that that $\|a^{(n)} - a^{(m)}\| < \epsilon/3$ for $n, m \ge M_0$. Applying the definition of this norm we see that $|P_n(y) - P_m(y)| < \epsilon/3$ for all y in [0, 1].

Since e_{t_0} is a continuous linear functional, there is an $N \ge M_0$ so that $|e_{t_0}(v) - e_{t_0}(a^{(n)})| < \epsilon/3$ for all $n \ge N$. We have $e_{t_0}(a^{(n)}) = P_n(t_0)$ and $e_{t_0}(v) = f_v(t_0)$.

Since P_N is a continuous function of t, there is a $\delta > 0$ so that $|P_N(t) - P_N(t_0)| < \epsilon/3$ for all t in $(t_0 - \delta, t_0 + \delta)$.

Exercise: Combine the above inequalities to show that $|P_n(t) - f_v(t_0)| < \epsilon$ for all $n \ge N$ and t in $(t_0 - \delta, t_0 + \delta)$.

By the continuity of e_t , we see that $f_v(t) = e_t(v)$ is the limit of $P_n(t) = e_t(a^{(n)})$ as n goes to infinity. The limit of the above inequalities gives us $|f_v(t) - f_v(t_0)| \le \epsilon$ for all t in $(t_0 - \delta, t_0 + \delta)$ as required.

Real and Imaginary parts

An element a in \mathbb{C}^{∞} can be separated into real and imaginary parts by writing $a = u + \sqrt{-1}v$ where u and v lie in \mathbb{R}^{∞} . Moreover, since t in [0,1] is a real number $P_u(t)$ is the real part of $P_a(t)$ and $P_v(t)$ is the imaginary part of $P_a(t)$. Thus, if we prove that the completion $V_{\mathbb{R}}$ of \mathbb{R}^{∞} has image equal to the *real* valued continuous functions on [0, 1], then it can be deduced that the image V is equal to the complex valued continuous functions on [0, 1]. Thus, we will now prove the statement for real continuous functions.

The reason that this is a useful reduction is as follows. For a real valued function f, we define $f_+ = \max\{f, 0\}$ and $f_- = -\min\{f, 0\}$; these are non-negative functions. Moreover, $f = f_+ - f_-$ and $|f| = f_+ + f_-$. It follows that $f_+ = (f+|f|)/2$. Now, if f and g are two functions, then $\max\{f, g\} = \max\{f-g, 0\}+g$ and $\min\{f, g\} = -\max\{-f, -g\}$. Thus, for real-valued functions, if we want to exhibit the latter two functions in a certain vector space of functions, it is enough if we should that for every f in that vector space, the function |f| is in that vector space of functions.

Secondly, for real-valued functions, $|f| = \sqrt{f^2}$. So, what we really need to show is that if f is in the vector space then so is $\sqrt{f^2}$.

Polynomials of polynomials

Exercise: If P is a polynomial function of n variables and Q_1, \ldots, Q_n are polynomial functions of m variables then $P(Q_1, \ldots, Q_n)$ is a polynomial function of m variables.

This can be used to show:

Exercise: If f lies in the image of $V_{\mathbb{R}}$ and P is a real polynomial function of one variable, then P(f) lies in the image of $V_{\mathbb{R}}$.

Now, suppose that P_n is a sequence of polynomials converging uniformly in [0, 1] to a function g and f takes values in [0, 1].

Exercise: Show that $P_n(f)$ converges uniformly to g(f).

It follows that if g lies in $V_{\mathbb{R}}$ and f takes values in [0, 1], then g(f) is also in $V_{\mathbb{R}}$. This will allow us to apply the following construction.

Square roots

We now produce a sequence of polynomials which converge to the function $s(t) = \sqrt{t}$ for t in [0, 1].

Let $u_1(t) = t$ and we inductively define for $n \ge 1$:

$$u_{n+1}(t) = u_n(t) + \frac{t - (u_n(t))^2}{2}$$

Exercise: Check by induction that if P is a polynomial then so is $P + (t - P^2)/2$.

Exercise: Suppose that if $0 \le a \le \sqrt{t} \le 1$, then $(t - a^2)/2 \le \sqrt{t} - a$. (Hint: Note that $\sqrt{t} + a \le 2$.)

Exercise: Check by induction that $0 \le u_{n+1}(t) \le \sqrt{t}$ for t in [0,1].

Thus, u_{n+1} is an increasing sequence of polynomials bounded above by s(t). Let $u(t) = \sup_n u_n(t)$.

Exercise: Check that $t = u(t)^2$. (Hint: Take limits in the above equation.)

In other words, we have shown that s(t) is the pointwise limit of the polynomials $u_n(t)$ for t in [0, 1]. We want to show that this convergence is in norm. In other words, given $\epsilon > 0$ we want to find N so that $|u_n(t) - s(t)| < \epsilon$ for all $n \ge N$ and for all t in [0, 1]. This is a consequence of the following three features of this situation:

- The functions s(t) and $u_n(t)$ are continuous.
- The values $u_n(t)$ increase to s(t) as n increases.
- The interval [0, 1] is compact.

The idea is to find for each point t in [0, 1]

- A μ_t for which $|s(y) s(t)| < \epsilon/3$ if y lies in $(t \mu_t, t + \mu_t)$.
- An N_t for which $u_{N_t}(t) > s(t) \epsilon/3$.
- A τ_t for which $|u_{N_t}(y) u_{N_t}(t)| < \epsilon/3$ if y lies in $(t \tau_t, t + \tau + t)$.

We then take δ_t to be the minimum of μ_t and τ_t . Now, we use compactness of [0, 1] to find a finite collection t_1, \ldots, t_r so that the union of $(t_i - \delta_{t_i}, t_i + \delta_{t_i})$ covert [0, 1]. Let N be greater than or equal to all the N_{t_i} .

Exercise: Combine the above inequalities to check that $|u_n(y) - s(y)| < \epsilon$ for all y in [0, 1] and for all $n \ge N$.

This shows that $s(t) = \sqrt{t}$ is a uniform limit of polynomials in [0, 1].

Given that a certain function f lies in $V_{\mathbb{R}}$ we want to show that |f| lies in $V_{\mathbb{R}}$. Suppose that a = ||f|| is the supremum of all values of f. Then f^2/a^2 takes values in [0, 1]. Combining the results of the previous two subsections, we can then show that $\sqrt{f^2/a^2}$ is in $V_{\mathbb{R}}$. This means that $|f| = a\sqrt{f^2/a^2}$ is in $V_{\mathbb{R}}$. As seen in two subsections above, this means that if f and g are in $V_{\mathbb{R}}$ then so are $\min\{f, g\}$ and $\max\{f, g\}$.

Min-Max approach

Given a continuous function $f : [0, 1] \to \mathbb{R}$ we want to approximate it by functions in $V_{\mathbb{R}}$. More precisely, given $\epsilon > 0$ we want to find a function g in $V_{\mathbb{R}}$ so that $|f(t) - g(t)| < \epsilon$ for all t in [0, 1]. We think of this condition as

$$f(t) - \epsilon < g(t) < f(t) + \epsilon$$

and try to satisfy each side "separately".

Exercise: For every chosen pair of points t, s in [0, 1] we can find a polynomial $Q_{t,s}$ so that $Q_{t,s}(t) = f(t)$ and $Q_{t,s}(s) = f(s)$. (Hint: If $t \neq s$, consider $Q_{t,s} = f(s)(x-t)/(s-t) + f(t)(x-s)/(t-s)$. What about if s = t?)

Now f and $Q_{t,s}$ are continuous on [0,1] and $f(s) = Q_{t,s}(s)$. So, there is a $\delta_{t,s}$ so that $|f(a) - Q_{t,s}(a)| < \epsilon$ for each a in [0,1] that lies in $(s - \delta_{t,s}, s + \delta_{t,s})$. Using compactness of [0,1], there is a finite collection s_1, \ldots, s_m so that if $\delta_i = \delta_{t,s_i}$ then [0,1] is contained in the union of the intervals $(s_i - \delta_i, s_i + \delta_i)$. We put $h_t = \min_{i=1}^m Q_{t,s_i}$. As seen above h_t lies in $V_{\mathbb{R}}$.

Exercise: Check that $h_t(t) = f(t)$ and that $h_t(a) < f(a) + \epsilon$ for all a in [0, 1]. (Hint: h_t is the minimum of functions Q_{t,s_i} and at least one of these satisfies this condition at each point of [0, 1].)

Now, h_t and f are continuous in [0, 1] and $h_t(t) = f(t)$. So, there is a μ_t so that $|f(a) - h_t(a)| < \epsilon$ for each a in [0, 1] which lines in $(t - \mu_t, t + \mu + t)$. Again using the compactness of [0, 1], there is a finite collection t_1, \ldots, t_n so that if

 $\mu_i = \mu_{t_i}$, then [0,1] is contained in the union of the intervals $(t_i - \mu_i, t_i + \mu + i)$. We put $g = \max_{i=1}^m h_{t_i}$. As seen above g lies in $V_{\mathbb{R}}$.

Exercise: Check that $f(a) - \epsilon < g(a) < f(a) + \epsilon$ for all a in [0, 1]. (Hint: The second part of the inequality is satisfied by all the h_{t_i} . For the first part, we note that g is the maximum of functions h_{t_i} and at least one of these satisfies this condition at each point of [0, 1].)

Thus, we have completed the argument that $V_{\mathbb{R}}$ contains all continuous functions on [0, 1] with values in \mathbb{R} . As seen above, the argument for V can be completed by arguing separately for the real and imaginary parts.

Extensions

The arguments given above can be extended to any compact set K in \mathbb{R} by defining

$$||a||_{C(K)} = \sup_{x \in K} P_a(x)$$

as a norm on \mathbb{C}^{∞} . We will still need to use the subsection above to find the square root on the interval [0, 1] as a uniform limit of polynomials on [0, 1]. The subsection on the composition of polynomials then allows us to show that the completion is closed under $f \mapsto |f|$. The rest of the proof (Min-Max part) is the same.

In order to extend the argument to compact sets in \mathbb{R}^n , we need to put an *order* on monomials $t_1^{k_1} \cdots t_n^{k_n}$ in order to identify \mathbb{C}^{∞} with $\mathbb{C}[t_1, \ldots, t_n]$. Other than that the proof will proceed along similar lines.

Warning: One *can* identify \mathbb{C} with \mathbb{R}^2 . However, polynomials with complex coefficients on \mathbb{R}^2 are actually polynomials in 2 variables. To think of them as polynomials in the variable $z \in \mathbb{C}$ we need to write $x = (z + \overline{z})/2$ and $y = -\iota(z - \overline{z})/2$. With this substitution, these become polynomials with complex coefficients in two variables z and \overline{z} . On the other hand, if we take the norm

$$||a|| = \sup_{|z| \le 1} \left| \sum_{i=0}^{n} a_i z^i \right|$$

(where z is allowed to take complex values) on \mathbb{C}^{∞} , then the completion is quite a bit *smaller* than the space of continuous functions on the unit disk. By Montel's theorem one can show that this completion consists of those continuous functions on the unit disk that are *analytic* in the interior of the unit disk.