## Spaces of Functions

The fundamental space of functions that we know is the space of polynomials. The vector space of (complex valued) polynomials in the variable $x$ can be identified with the space $\mathbb{C}^{\infty}$ via the map

$$
a=\left(a_{0}, \ldots, a_{N}, 0, \ldots\right) \mapsto P_{a}(x)=\sum_{k=0}^{N} a_{k} x^{k}
$$

(Note that for convenience of notation, we use sequences indexed starting from 0 in this section.)

We can consider this as a function $[0,1] \rightarrow \mathbb{C}$ by sending $t$ to $P_{a}(t)$. Let us define:

$$
\|a\|_{C[0,1]}=\sup _{t \in[0,1]}\left|P_{a}(t)\right|
$$

Exercise: Check that $\|a\|_{C[0,1]}$ is a norm on $\mathbb{C}^{\infty}$.
We will study the completion $V$ of $\mathbb{C}^{\infty}$ and show that it can be identified with the space of (complex valued) continuous functions on $C[0,1]$ (this explains the notation!). In order to do this, we must show:

1. Given $v$ in $V$ we can define a function $f_{v}:[0,1] \rightarrow \mathbb{C}$.
2. The $\operatorname{map} v \mapsto f_{v}$ is one-to-one.
3. The function $f_{v}$ is continuous.
4. Given a continuous function $f:[0,1] \rightarrow \mathbb{C}$, there is a $v$ in $V$ so that $f=f_{v}$.

In addition, this result can, with suitable modifications be generalised to other compact subsets of $\mathbb{R}$. With some additional modifications, we can even generalise it to compact subsets of $\mathbb{R}^{n}$. However, it is worth pointing out that the case of polynomial functions on compact subsets of $\mathbb{C}$ is quite different! One important reason is that a polynomial function of two real variables $x$ and $y$ is quite different from a polynomial function of the single complex variable $z=x+\iota y$. In particular, $|z|^{2}=x^{2}+y^{2}$ is a polynomial function of $x$ and $y$ but is not a polynomial function of $z$. We will see, during the course of the proof, why this is important.

## Evaluation as a linear functional

Given $t$ in $[0,1]$, we have the linear functional $e_{t}: \mathbb{C}^{\infty} \rightarrow \mathbb{C}$ defined by

$$
e_{t}(a)=P_{a}(t)=\sum_{k=0}^{\infty} a_{k} t^{t}
$$

note that the sum on the right-hand side is finite since $a=\left(a_{0}, \ldots, a_{N}, 0, \ldots\right)$ is a sequence which consists of 0 's beyond some index.

Exercise: Show that $e_{t}$ is a linear functional on $\mathbb{C}^{\infty}$ with norm $\left\|e_{t}\right\| \leq 1$ with respect to the norm $\|\cdot\|_{C[0,1]}$ on $\mathbb{C}^{\infty}$.

Since $V$ is the completion of $\mathbb{C}^{\infty}$ with respect to this norm, the continuous linear functional extends to a linear functional $e_{t}: V \rightarrow \mathbb{C}$ with norm 1 . In particular, for any vector $v$ in $V$, and any $t$ in $[0,1]$, we have a complex number $e_{t}(v)$.

We now define the map $V \rightarrow \operatorname{Map}([0,1], \mathbb{C})$ given by $v \mapsto f_{v}$ where $f_{v}(t)=e_{t}(v)$. It is clear that $a$ in $\mathbb{C}^{\infty}$ is associated with the polynomial function $P_{a}$ by this assignment.

## $V$ as a space of functions

Given an element $v$ in $V$, we wish to show that, if $f_{v}(t)=0$ for all $t$ in $[0,1]$, then $v$ is itself 0 . Now, $v$ is determined by sequence $a^{(n)}$ of elements of $\mathbb{C}^{\infty}$ which converges to $v$ in the norm $\|\cdot\|_{C[0,1]}$. Thus, we would like to prove that for all $\epsilon>0$, there is an $N$ so that $\left\|a^{(n)}\right\|<\epsilon$ for $n \geq N$. To ease the notation, we use $P_{n}$ to denote the polynomial function associated with $a^{(n)}$ as above; we also use the notation $\|\cdot\|$ to denote the norm $\|\cdot\|_{C[0,1]}$.
Since $a^{(n)}$ is a Cauchy sequence, there is a natural number $M_{0}$ so that $\| a^{(n)}-$ $a^{(m)} \|<\epsilon / 3$ for $n, m \geq M_{0}$. Applying the definition of this norm we see that $\left|P_{n}(y)-P_{m}(y)\right|<\epsilon / 3$ for all $y$ in $[0,1]$.

Since $a^{(n)}$ converges to $v$ and for each $t$ in $[0,1]$, the map $e_{t}$ is a continuous linear functional on $V$ and $e_{t}(v)=0$, there is an $N_{t} \geq M_{0}$ so that $\left|e_{t}\left(a^{(n)}\right)\right|<\epsilon / 3$ for all $n \geq N_{t}$. Equivalently, by definition of $e_{t}$, we have $\left|P_{n}(t)\right|<\epsilon / 3$ for $n \geq N_{t}$.
Now $P_{N_{t}}$ is a polynomial function and thus it is continuous. It follows that there is a $\delta_{t}>0$ so that $\left|P_{N_{t}}(y)-P_{N_{t}}(t)\right|<\epsilon / 3$ for all $y$ in the interval $\left(t-\delta_{t}, t+\delta_{t}\right)$.
Exercise: Show that for all $n \geq N_{t}$, and for all $y$ in the interval $\left(t-\delta_{t}, t+\delta_{t}\right)$ we have $\left\|P_{n}(y)\right\|<\epsilon$. (Hint: Combine the three inequalities using the triangle inequality!)
Since $[0,1]$ is a compact set, there is a finite collection $t_{1}, \ldots, t_{r}$ of points in $[0,1]$ so that the union of the intervals $\left(t_{i}-\delta_{t_{i}}, t_{i}+\delta_{t_{i}}\right)$ cover the entire interval $[0,1]$. Now, put $N=\max _{i=1}^{r} N_{t_{i}}$.
Exercise: Show that for all $n \geq N$, and for all $y$ in the interval $[0,1]$ we have $\left\|P_{n}(y)\right\|<\epsilon$. (Hint: For each $y$ choose an appropriate $t_{i}$ and apply the previous exercise.)
It follows that $\left\|a^{(n)}\right\|<\epsilon$ for all $n \geq N$ as required.

## Continuity of $f_{v}$

We want to prove that given $t_{0}$ in $[0,1]$ and $\epsilon>0$, there is a $\delta>0$ so that $\left|f_{v}(t)-f_{v}\left(t_{0}\right)\right| \leq \epsilon$ for all $t$ in $\left(t_{0}-\delta, t_{0}+\delta\right)$.

As in the previous paragraph, let $a^{(n)}$ be a sequence of elements of $\mathbb{C}^{\infty}$ which converges to $v$ in the norm $\|\cdot\|_{C[0,1]}$; to simplify notation we use $P_{n}$ to denote the polynomial associated with $a^{(n)}$. Continuing as before, let $M_{0}$ be such that that $\left\|a^{(n)}-a^{(m)}\right\|<\epsilon / 3$ for $n, m \geq M_{0}$. Applying the definition of this norm we see that $\left|P_{n}(y)-P_{m}(y)\right|<\epsilon / 3$ for all $y$ in $[0,1]$.

Since $e_{t_{0}}$ is a continuous linear functional, there is an $N \geq M_{0}$ so that $\mid e_{t_{0}}(v)-$ $e_{t_{0}}\left(a^{(n)}\right) \mid<\epsilon / 3$ for all $n \geq N$. We have $e_{t_{0}}\left(a^{(n)}\right)=P_{n}\left(t_{0}\right)$ and $e_{t_{0}}(v)=f_{v}\left(t_{0}\right)$.
Since $P_{N}$ is a continuous function of $t$, there is a $\delta>0$ so that $\left|P_{N}(t)-P_{N}\left(t_{0}\right)\right|<$ $\epsilon / 3$ for all $t$ in $\left(t_{0}-\delta, t_{0}+\delta\right)$.

Exercise: Combine the above inequalities to show that $\left|P_{n}(t)-f_{v}\left(t_{0}\right)\right|<\epsilon$ for all $n \geq N$ and $t$ in $\left(t_{0}-\delta, t_{0}+\delta\right)$.

By the continuity of $e_{t}$, we see that $f_{v}(t)=e_{t}(v)$ is the limit of $P_{n}(t)=e_{t}\left(a^{(n)}\right)$ as $n$ goes to infinity. The limit of the above inequalities gives us $\left|f_{v}(t)-f_{v}\left(t_{0}\right)\right| \leq \epsilon$ for all $t$ in $\left(t_{0}-\delta, t_{0}+\delta\right)$ as required.

## Real and Imaginary parts

An element $a$ in $\mathbb{C}^{\infty}$ can be separated into real and imaginary parts by writing $a=u+\sqrt{-1} v$ where $u$ and $v$ lie in $\mathbb{R}^{\infty}$. Moreover, since $t$ in $[0,1]$ is a real number $P_{u}(t)$ is the real part of $P_{a}(t)$ and $P_{v}(t)$ is the imaginary part of $P_{a}(t)$. Thus, if we prove that the completion $V_{\mathbb{R}}$ of $\mathbb{R}^{\infty}$ has image equal to the real valued continuous functions on $[0,1]$, then it can be deduced that the image $V$ is equal to the complex valued continuous functions on $[0,1]$. Thus, we will now prove the statement for real continuous functions.

The reason that this is a useful reduction is as follows. For a real valued function $f$, we define $f_{+}=\max \{f, 0\}$ and $f_{-}=-\min \{f, 0\}$; these are non-negative functions. Moreover, $f=f_{+}-f_{-}$and $|f|=f_{+}+f_{-}$. It follows that $f_{+}=$ $(f+|f|) / 2$. Now, if $f$ and $g$ are two functions, then $\max \{f, g\}=\max \{f-g, 0\}+g$ and $\min \{f, g\}=-\max \{-f,-g\}$. Thus, for real-valued functions, if we want to exhibit the latter two functions in a certain vector space of functions, it is enough if we should that for every $f$ in that vector space, the function $|f|$ is in that vector space of functions.
Secondly, for real-valued functions, $|f|=\sqrt{f^{2}}$. So, what we really need to show is that if $f$ is in the vector space then so is $\sqrt{f^{2}}$.

## Polynomials of polynomials

Exercise: If $P$ is a polynomial function of $n$ variables and $Q_{1}, \ldots, Q_{n}$ are polynomial functions of $m$ variables then $P\left(Q_{1}, \ldots, Q_{n}\right)$ is a polynomial function of $m$ variables.

This can be used to show:
Exercise: If $f$ lies in the image of $V_{\mathbb{R}}$ and $P$ is a real polynomial function of one variable, then $P(f)$ lies in the image of $V_{\mathbb{R}}$.
Now, suppose that $P_{n}$ is a sequence of polynomials converging uniformly in $[0,1]$ to a function $g$ and $f$ takes values in $[0,1]$.

Exercise: Show that $P_{n}(f)$ converges uniformly to $g(f)$.
It follows that if $g$ lies in $V_{\mathbb{R}}$ and $f$ takes values in $[0,1]$, then $g(f)$ is also in $V_{\mathbb{R}}$. This will allow us to apply the following construction.

## Square roots

We now produce a sequence of polynomials which converge to the function $s(t)=\sqrt{t}$ for $t$ in $[0,1]$.
Let $u_{1}(t)=t$ and we inductively define for $n \geq 1$ :

$$
u_{n+1}(t)=u_{n}(t)+\frac{t-\left(u_{n}(t)\right)^{2}}{2}
$$

Exercise: Check by induction that if $P$ is a polynomial then so is $P+\left(t-P^{2}\right) / 2$.
Exercise: Suppose that if $0 \leq a \leq \sqrt{t} \leq 1$, then $\left(t-a^{2}\right) / 2 \leq \sqrt{t}-a$. (Hint: Note that $\sqrt{t}+a \leq 2$.)
Exercise: Check by induction that $0 \leq u_{n+1}(t) \leq \sqrt{t}$ for $t$ in $[0,1]$.
Thus, $u_{n+1}$ is an increasing sequence of polynomials bounded above by $s(t)$. Let $u(t)=\sup _{n} u_{n}(t)$.
Exercise: Check that $t=u(t)^{2}$. (Hint: Take limits in the above equation.)
In other words, we have shown that $s(t)$ is the pointwise limit of the polynomials $u_{n}(t)$ for $t$ in $[0,1]$. We want to show that this convergence is in norm. In other words, given $\epsilon>0$ we want to find $N$ so that $\left|u_{n}(t)-s(t)\right|<\epsilon$ for all $n \geq N$ and for all $t$ in $[0,1]$. This is a consequence of the following three features of this situation:

- The functions $s(t)$ and $u_{n}(t)$ are continuous.
- The values $u_{n}(t)$ increase to $s(t)$ as $n$ increases.
- The interval $[0,1]$ is compact.

The idea is to find for each point $t$ in $[0,1]$

- A $\mu_{t}$ for which $|s(y)-s(t)|<\epsilon / 3$ if $y$ lies in $\left(t-\mu_{t}, t+\mu_{t}\right)$.
- An $N_{t}$ for which $u_{N_{t}}(t)>s(t)-\epsilon / 3$.
- A $\tau_{t}$ for which $\left|u_{N_{t}}(y)-u_{N_{t}}(t)\right|<\epsilon / 3$ if $y$ lies in $\left(t-\tau_{t}, t+\tau+t\right)$.

We then take $\delta_{t}$ to be the minimum of $\mu_{t}$ and $\tau_{t}$. Now, we use compactness of $[0,1]$ to find a finite collection $t_{1}, \ldots, t_{r}$ so that the union of $\left(t_{i}-\delta_{t_{i}}, t_{i}+\delta_{t_{i}}\right)$ covert $[0,1]$. Let $N$ be greater than or equal to all the $N_{t_{i}}$.
Exercise: Combine the above inequalities to check that $\left|u_{n}(y)-s(y)\right|<\epsilon$ for all $y$ in $[0,1]$ and for all $n \geq N$.
This shows that $s(t)=\sqrt{t}$ is a uniform limit of polynomials in $[0,1]$.
Given that a certain function $f$ lies in $V_{\mathbb{R}}$ we want to show that $|f|$ lies in $V_{\mathbb{R}}$. Suppose that $a=\|f\|$ is the supremum of all values of $f$. Then $f^{2} / a^{2}$ takes values in $[0,1]$. Combining the results of the previous two subsections, we can then show that $\sqrt{f^{2} / a^{2}}$ is in $V_{\mathbb{R}}$. This means that $|f|=a \sqrt{f^{2} / a^{2}}$ is in $V_{\mathbb{R}}$. As seen in two subsections above, this means that if $f$ and $g$ are in $V_{\mathbb{R}}$ then so are $\min \{f, g\}$ and $\max \{f, g\}$.

## Min-Max approach

Given a continuous function $f:[0,1] \rightarrow \mathbb{R}$ we want to approximate it by functions in $V_{\mathbb{R}}$. More precisely, given $\epsilon>0$ we want to find a function $g$ in $V_{\mathbb{R}}$ so that $|f(t)-g(t)|<\epsilon$ for all $t$ in $[0,1]$. We think of this condition as

$$
f(t)-\epsilon<g(t)<f(t)+\epsilon
$$

and try to satisfy each side "separately".
Exercise: For every chosen pair of points $t, s$ in $[0,1]$ we can find a polynomial $Q_{t, s}$ so that $Q_{t, s}(t)=f(t)$ and $Q_{t, s}(s)=f(s)$. (Hint: If $t \neq s$, consider $Q_{t, s}=f(s)(x-t) /(s-t)+f(t)(x-s) /(t-s)$. What about if $\left.s=t ?\right)$

Now $f$ and $Q_{t, s}$ are continuous on $[0,1]$ and $f(s)=Q_{t, s}(s)$. So, there is a $\delta_{t, s}$ so that $\left|f(a)-Q_{t, s}(a)\right|<\epsilon$ for each $a$ in $[0,1]$ that lies in $\left(s-\delta_{t, s}, s+\delta_{t, s}\right)$. Using compactness of $[0,1]$, there is a finite collection $s_{1}, \ldots, s_{m}$ so that if $\delta_{i}=\delta_{t, s_{i}}$ then $[0,1]$ is contained in the union of the intervals $\left(s_{i}-\delta_{i}, s_{i}+\delta_{i}\right)$. We put $h_{t}=\min _{i=1}^{m} Q_{t, s_{i}}$. As seen above $h_{t}$ lies in $V_{\mathbb{R}}$.
Exercise: Check that $h_{t}(t)=f(t)$ and that $h_{t}(a)<f(a)+\epsilon$ for all $a$ in $[0,1]$. (Hint: $h_{t}$ is the minimum of functions $Q_{t, s_{i}}$ and at least one of these satisfies this condition at each point of $[0,1]$.)
Now, $h_{t}$ and $f$ are continuous in $[0,1]$ and $h_{t}(t)=f(t)$. So, there is a $\mu_{t}$ so that $\left|f(a)-h_{t}(a)\right|<\epsilon$ for each $a$ in $[0,1]$ which lines in $\left(t-\mu_{t}, t+\mu+t\right)$. Again using the compactness of $[0,1]$, there is a finite collection $t_{1}, \ldots, t_{n}$ so that if
$\mu_{i}=\mu_{t_{i}}$, then $[0,1]$ is contained in the union of the intervals $\left(t_{i}-\mu_{i}, t_{i}+\mu+i\right)$. We put $g=\max _{i=1}^{m} h_{t_{i}}$. As seen above $g$ lies in $V_{\mathbb{R}}$.

Exercise: Check that $f(a)-\epsilon<g(a)<f(a)+\epsilon$ for all $a$ in [0,1]. (Hint: The second part of the inequality is satisfied by all the $h_{t_{i}}$. For the first part, we note that $g$ is the maximum of functions $h_{t_{i}}$ and at least one of these satisfies this condition at each point of $[0,1]$.)
Thus, we have completed the argument that $V_{\mathbb{R}}$ contains all continuous functions on $[0,1]$ with values in $\mathbb{R}$. As seen above, the argument for $V$ can be completed by arguing separately for the real and imaginary parts.

## Extensions

The arguments given above can be extended to any compact set $K$ in $\mathbb{R}$ by defining

$$
\|a\|_{C(K)}=\sup _{x \in K} P_{a}(x)
$$

as a norm on $\mathbb{C}^{\infty}$. We will still need to use the subsection above to find the square root on the interval $[0,1]$ as a uniform limit of polynomials on $[0,1]$. The subsection on the composition of polynomials then allows us to show that the completion is closed under $f \mapsto|f|$. The rest of the proof (Min-Max part) is the same.
In order to extend the argument to compact sets in $\mathbb{R}^{n}$, we need to put an order on monomials $t_{1}^{k_{1}} \cdots t_{n}^{k_{n}}$ in order to identify $\mathbb{C}^{\infty}$ with $\mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$. Other than that the proof will proceed along similar lines.
Warning: One can identify $\mathbb{C}$ with $\mathbb{R}^{2}$. However, polynomials with complex coefficients on $\mathbb{R}^{2}$ are actually polynomials in 2 variables. To think of them as polynomials in the variable $z \in \mathbb{C}$ we need to write $x=(z+\bar{z}) / 2$ and $y=-\iota(z-\bar{z}) / 2$. With this substitution, these become polynomials with complex coefficients in two variables $z$ and $\bar{z}$. On the other hand, if we take the norm

$$
\|a\|=\sup _{|z| \leq 1}\left|\sum_{i=0}^{n} a_{i} z^{i}\right|
$$

(where $z$ is allowed to take complex values) on $\mathbb{C}^{\infty}$, then the completion is quite a bit smaller than the space of continuous functions on the unit disk. By Montel's theorem one can show that this completion consists of those continuous functions on the unit disk that are analytic in the interior of the unit disk.

