
Invertible operators and spectrum

An bounded linear operator T : V → V from a normed linear space to itself is
called “invertible” if there is a bounded linear operator S : V → V so that S ◦ T
and T ◦ S are the identity operator 1. We say that S is the inverse of T in this
case.

Exercise: If S and T are bounded linear operators that are inverses of each
other, show that ‖S‖‖T‖ ≤ 1.

We note that for a linear operator to have an inverse (without the condition of
boundedness) it is necessary and sufficient that the operator be one-to-one and
onto. In general, this may not be enough to ensure that this inverse operator be
bounded.

For the arguments in this section to work, we will need to talk about convergence
of series and thus from here on we will restrict our attention to complete normed
linear spaces (i.e. Banach spaces). Note that in this case the space B(V ) of
bounded linear operators from V to itself is a Banach space with respect to the
operator norm.

Series in a Banach spaces

Let xn be a sequence of elements in a Banach space V and define sN =
∑N

n=1 xn.
We say that the series

∑∞
n=1 xn converges in V if sN is a Cauchy sequence in V .

In that case, sN converges to a unique s in V and we say that s is the sum of
this series.

The most important case when we have a convergent series is when the sum∑N
n=1‖xn‖ is uniformly bounded independent of N . In this case, we say that

the series is absolutely convergent.

Exercise: For an absolutely convergent series show that, for all ε > 0 there is an
N so that

∑M
n=N+1‖xn‖ < ε for all M > N . (Hint: Use proof by contradiction!)

By the triangle inequality, one can then show:

Exercise: For all ε > 0, and for N as above, show that ‖sn − sm‖ < ε for
n,m > N . (Hint: Expand sn − sm as a sum of xk’s.)

In other words, sn is a Cauchy sequence. We thus see that an absolutely
convergent series is also convergent.

Exercise: If
∑∞

n=1 xn and
∑∞

n=1 yn are convergent series in V , then
∞∑

n=1
(xn + yn) =

∞∑
n=1

xn +
∞∑

n=1
yn

(Hint: The proof is the same as that for series of real numbers with absolute
value replaced by norm.)
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Neighbourhood of identity

Let T : V → V be a bounded linear operator such that ‖T‖ < 1 for a Banach
space V . We consider the series

∑∞
n=0 T

n in the Banach space B(V ). (Here
and below we will use the convention that T 0 = 1 is the identity operator. This
simplifies the notation.)

Exercise: Show that the series above is absolutely convergent. (Hint: Pick an
k > 0 so that ‖T‖ < (1 − 1/k) and show that ‖Tn‖ < (1 − 1/k)n. Now use
comparison to prove absolute convergence.)

Since B(V ) is a Banach space, this converges to an S in B(V ).

Exercise: For each v in V check that the series
∑∞

n=0 T
n(v) is absolutely

convergent in V . (Hint: Note that ‖Tn(v)‖ ≤ ‖Tn‖‖v‖.)

Exercise: Check that S(v) =
∑∞

n=0 T
n(v). (Hint: Let SN be the partial sums∑N

n=0 T
n and note that SN (v) =

∑N
n=0 T

n(v).)

Exercise: Check that T (S(v)) = v + S(v) and S(T (v)) = v + S(v) for all v in
V .

We can now conclude the following.

Exercise: Given that A is an element of B(V ) such that ‖A− 1‖ < 1; i.e. that
A at a distance less than 1 from the identity operator 1 : V → V . Show that A
is invertible. (Hint: Put T = 1−A and apply the previous exercises.)

In other words, all operators at a distance of less than 1 from the identity
operator are invertible.

We can generalise this to neighbourhoods of invertible operators other than 1.
Given an invertible operator P , let Q be its inverse.

Exercise: Given that ‖A−P‖ < 1/‖Q‖, show that A is invertible. (Hint: Note
that if T = 1−Q ◦A = Q ◦ (P −A), then ‖T‖ < 1. Now use this to show that
Q ◦A is invertible and thus A is invertible.)

If we use GL(V ) to denote the subset of B(V ) that consists of invertible elements,
then this shows that GL(V ) is open.

Spectrum of an operator

For an operator A in B(V ), the spectrum is defined as the set of z ∈ C such
that A− z1 is not invertible. The set σ(A) is used to denote this set.

If v is a non-zero vector and λ a complex number such that Av = λv then we
say that v is an eigenvector of A and λ is an eigenvalue of A. It is clear that
A − λ1 is not one-to-one in this case, so it is not invertible and thus λ lies in
σ(A). However, we shall see examples where the spectrum can be larger than
the set of eigenvalues of an operator.
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If z 6= 0, then this condition is the same as the condition that 1− (1/z)A is not
invertible. As seen in the previous section, if ‖(1/z)A‖ < 1, then 1− (1/z)A is
invertible. So, we see that if |z| > ‖A‖, the operator A− z1 is invertible. Thus
σ(A) is contained in the closed disk of radius ‖A‖ around the origin in C.

The map φ : z 7→ A−z1 is a continuous map C→ B(V ). As seen in the previous
section GL(V ) is open in B(V ). Hence, its complement is closed in B(V ). The
spectrum σ(A) is precisely φ−1(B(V )−GL(V )), so it is a closed set.

In other words σ(A) is a closed and bounded subset of C; i.e. it is a compact set.

The complement C − σ(A) is called the resolvent set of A and is sometimes
denoted by ρ(A). It is a non-empty (as seen above) open subset of C.

Matrix Coefficients of an operator

Given a linear operator A : V → V , f a bounded linear functional on V and
v a vector in V , we can think of f(Av) as a “matrix coefficient” of A. In the
traditional finite dimensional case, suppose ei for i = 1, . . . , n is a basis of V and
e∗i for i = 1, . . . , n is a dual basis. Then

Exercise: Check that e∗i (Aej) is the (i, j)-th entry of the matrix of A with
respect to the basis with notation as above.

Exercise: Given a bounded linear operator A such that f(Av) = 0 for every
vector v and every bounded linear functional f on V , show that A = 0. (Hint:
If Av 6= 0 for some v, then use Hahn-Banach theorem to show that there is an f
so that f(Av) 6= 0.)

Thus, a bounded linear operator is determined by its matrix coefficients. For an
operator A, consider the function z 7→ f((A− z1)−1(v)) defined in the resolvent
set ρ(A). This is a complex valued function on an open subset of the complex
plane. We now study this function.

Exercise: Show that ‖A− z1‖ ≥ |z| − ‖A‖. (Hint: Use the triangle inequality
for operator norm and the fact that the norm of 1 is 1.)

We have seen that if |z| > ‖A‖, then A − z1 is invertible. Moreover, we have
seen that

‖(A− z1)−1‖ ≤ 1
‖A− z1‖

Exercise: Show that f((A− z1)−1(v)) is a bounded function on the subset of
ρ(A) that consists of z such that |z| > ‖A‖.

Exercise: Suppose that B is an invertible operator. Show that∑∞
n=1 z

nf(B−nBv) is an absolutely convergent series for z such that
|z| < 1/‖B−1‖.

It follows that this series defines an analytic function of z in this disk.

3



Exercise: Check that f((B − z1)−1(v)) is given by the above infinite series for
|z| < 1/‖B−1‖.

Exercise: Apply the above exercise to B = A − z01 for some z0 in ρ(A), to
show that f((A− z1)−1(v)) is an analytic function of z in some disk around z0.
(Hint: Write A− z1 as B − (z − z0)1.)

It follows that f((A−z1)−1(v)) is an analytic function for z in the open set ρ(A).
We have also seen that it is bounded outside the disk of radius ‖A‖. Hence, if
ρ(A) = C, the this is a bounded analytic function in the entire plane. Such a
function is necessarily a constant independent of z.

In other words, if σ(A) were to be empty, then all the matrix coefficients of
(A− z1)−1 would be constant (and the same as the matrix coefficients of A−1).
By what we have seen above, this would mean that (A− z1)−1 would itself be
the constant operator; consequently the same would be true of A− z1. However,
this would mean A = A− 1 or 1 = 0; a contradiction. Hence, we have proved by
contradiction that σ(A) is non-empty.

In conclusion, the spectrum σ(A) of a bounded linear operator A on a Banach
space is a non-empty compact subset of C.

Diagonal operators

Let V be one of the spaces C0, C, `1 or `2 and let e(n) for n = 1, . . . , be the
standard basis.

Exercise: Given any bounded sequence (an) of complex numbers, define the
operator T by T ((bn)) = (anbn). Show that this is a bounded operator on V
and that ‖T‖ ≤ ‖(an)‖∞.

If ‖an‖ ≥ δ > 0 for all n, then (1/an) is also a bounded sequence with
‖(1/an)‖∞ ≤ 1/δ.

Exercise: If S((bn)) = (bn/an), then show that S is the inverse of T .

Now, Te(n) = ane
(n) for all n. This shows that an is an eigenvalue of T and so lies

in the spectrum σ(T ). Hence, σ(T ) contains the closure of the set {an : n ∈ N}
of complex numbers.

Exercise: If T is given as above and a is any complex number, then check that
T − a1 is given by (T − a1)((bn)) = ((an − a)bn).

Suppose a is not in the closure of this set. This means that there is a δ > 0 so
that |a− an| ≥ δ. Let S((bn)) = (bn/(an − a). We have seen above that this is
the inverse of the operator T − a1. In other words, a is not in the spectrum
σ(T ). Thus, the spectrum of T is exactly the closure of the set {aN : n ∈ N}.

Exercise: Given any non-empty compact set K in C show that there is a
bounded sequence (an) of complex numbers so that the closure of {an : n ∈ N}
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is K.

Consider the bounded sequence (1/n) and the associated operator T .

Exercise: Show that the operator T ((bn)) = (bn/n) is one-to-one.

It follows that 0 is not an eigenvalue of T . On the other hand, as seen above, 0
lies in the spectrum of T .
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