
Riesz’ Representation Theorem

Given a vector b in H, we can define a linear functional hb : H → R by
defining hb(a) = 〈a, b〉. We have seen that this gives a norm-preserving map
λ : H → B(H,R). In this section we will show that this map is onto.

Exercise: Given a linear functional h : Rn → R show that there is a vector b in
Rn such that h(a) = 〈a, b〉, where this is the usual inner product on Rn. (Hint:
Take the n-coordinate of b to be h(e(k)) where e(1), . . . , e(n) is the standard basis
of Rn.

Separable Hilbert Spaces

We could try to generalise this approach to infinite dimensions, if we had
something like the standard basis. For example, suppose that H contains a
countable dense set D. Let B be a maximal linearly independent subset of
D. Apply the Gram-Schmidt process to B to obtain a sequence of vectors e(n)

with the property that 〈e(n), e(m)〉 = δm,n is 1 if m = n and 0 otherwise (an
orthonormal sequence). In what sense can we say that this is a “basis” of H?

The orthonormal basis gives a linear map e : R∞ → H in the obvious way: a
vector a = (an) in RN is mapped to e(a) =

∑N
n=1 ane

(n).

Exercise: Check that

‖e(a)‖ =
N∑
n=1
|an|2 = ‖a‖2

In other words, the linear map e preserves norms if we use the norm ‖·‖2 on
R∞. Thus, the map e extends to a norm-preserving map on `2 which is the
completion of R∞.

On the other hand, D is dense in H, and D is contained in the linear span of B
which is also the linear span of the sequence e(n) which, in turn is R∞. In other
words, e : `2 → H is norm-preserving and onto; hence, it is an isomorphism of
normed linear spaces.

Exercise: If f : H1 → H2 is a norm-preserving isomorphism of Hilbert spaces,
then show that the inner-product of a and b in H1 is the same as the inner-
product of f(a) and f(b) in H2. (Hint: Use the formula for the inner product in
terms of the norm!)

Continuous linear functionals on `2 can be identified by their restriction to R∞.
In turn, linear functionals of R∞ can be identified with sequences. In an earlier
section, we used continuity with respect to ‖·‖ to identify the sequences arising
from continuous linear functionals with `2. Thus, this proves Riesz representation
theorem in this case.
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Since most Hilbert spaces of interest turn out to be separable Hilbert spaces,
this is an adequate argument. However, there are some nice ideas in the next
proof of Riesz Representation theorem which are of independent interest.

Orthogonal projection

For n > m, consider the subspace Rm of Rn which consists of vectors where the
last n−m co-ordinates are 0.

Exercise: Given a vector v = (x1, . . . , xn), put π(v) = (x1, . . . , xm, 0, . . . , 0)
and show that

‖v − π(v)‖ = distance from v to Rm = inf
w∈Rm

‖v − w‖

More generally, if W is a finite dimensional subspace of an inner-product space
V , then:

Exercise: Given a vector v in an inner product space V and a finite dimensional
subspace W of V , there is a vector π(v) in W such that

‖v − π(v)‖ = distance from v to W = inf
w∈W
‖v − w‖

(Hint: Extend an orthonormal basis of W to an orthonormal basis of W + Rv
and apply the previous exercise to the corresponding copy of Rn inside V .)

Exercise: Given a subspace W of an inner product space V and vectors v ∈ V
and w0 ∈W such that

‖v − w0‖ = distance from v to W = inf
w∈W
‖v − w‖

Show that 〈v − w0, w〉 = 0 for all w in W .

Exercise: Given a subspace W of an inner product space V and vectors v ∈ V
and w0 ∈W such that 〈v − w0, w〉 = 0 for all w in W , show that

‖v − w0‖ = distance from v to W = inf
w∈W
‖v − w‖

So, for a finite dimensional subspace W , the vector π(v) is the base of a “per-
pendicular drop” from v to W . In order to extend this to infinite dimensional
W ’s, we need to understand the notion of an “approximate perpendicular”. First
we need a simple application of the parallelogram identity:

Exercise: Given vectors v and w such that ‖v‖2, ‖w‖2 and ‖v+w
2 ‖

2 are within
ε of each other (i.e. all lie in an interval of length ε), we have ‖v − w‖2 < 4ε.
(Hint: The parallelogram identity can be stated as

‖v − w‖2 = 2‖v‖2 + 2‖w‖2 − 4‖v + w

2 ‖2

2



Now we can estimate the right-hand side.)

A similar idea can be used for the following:

Exercise: Given vectors v and w such that ‖v‖2, ‖w‖2 and 〈v, w〉 are within
ε of each other (i.e. all lie in an interval of length ε), we have ‖v − w‖2 < 2ε.
(Hint: We have the identity

‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2〈v, w〉

Now we can estimate the right-hand side.)

For V an inner product space, W a subspace and v a vector in V , let d =
d(v,W ) = infw∈W ‖v − w‖.

Exercise: For every n ≥ 1 show that there is a vector wn in W such that
‖v − wn‖2< d2 + 1/n.

Given ε > 0 we take N so that ε2 > 4/N and claim that for all n,m >≥ N we
have ‖wn − wm‖ < ε. We first note that (wn + wm)/2 lies in W so that

‖(v − wn) + (v − wm)‖2 = 4‖v − wn + wm
2 ‖ > 4d2

Using the parallelogram identity

‖wn − wm‖2 =

2‖v − wn‖2 + 2‖v − wm‖2 − 4‖v − wn + wm
2 ‖2

= 2
(
‖v − wn‖2 − ‖v − wn + wm

2 ‖2
)

+ 2
(
‖v − wm‖2 − ‖v − wn + wm

2 ‖2
)

≤ 2
n

+ 2
m
≤ 4/N

<
ε2

This proves that the sequence wn is a Cauchy sequence in W . In summary,
given a vector v in an inner product space V and a subspace W , we have
produced a Cauchy sequence wn of vectors in W such that ‖v − wn‖ decreases
to d(v,W ) = infw∈W ‖v − w‖.

Now, assume that V is a Hilbert space and that W is a closed subspace. In that
case, the Cauchy sequence wn converges to a vector ṽ and this vector lies in W
(since W is closed). This vector has the property that ‖v − ṽ‖= d(v,W ). As
seen above, this means that for w another vector in W we have 〈v − ṽ, w〉 = 0.
In other words, ṽ is the “orthogonal projection” of v to W .

Conversely, we have seen that if ṽ ∈W is such that 〈v − ṽ, w〉 = 0 for all w in
W , then ‖v − ṽ‖ = d(v,W ). In fact, if w ∈W is any non-zero vector then

‖v − (ṽ + w)‖2 = ‖v − ṽ‖2 + ‖w‖2 > ‖v − ṽ‖2
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So this vector is uniquely determined. This allows us to define a map π : V →W
by sending each vector v to the vector ṽ as constructed above (when V is a
Hilbert space). We note that if v and v′ are vectors in V , then v − π(v) and
v′ − π(v′) are orthogonal to W . Hence, so is (v + v′) − (π(v) + π(v′). By the
uniqueness of the orthogonal projection, we see that π(v + v′) = π(v) + π(v′).
Similarly,

Exercise: Show that π(a · v) = a · π(v).

In other words, π is a linear map. Moreover, by construction, ‖v‖2 = ‖π(v)‖2 +
‖v − π(v)‖2 so that ‖π‖ ≤ 1. Thus, π is a continuous linear functional. We have
thus proved:

Given a closed subspace W of a Hilbert space H, there is a bounded linear
functional πW : H → H with image W such that for each vector v, the vector
v − πW (v) is orthogonal to W .

By the uniqueness of π(v), we can easily see that π(w) = w for all w ∈ W . It
follows that (if W 6= 0!) then πW has norm 1.

Linear functionals

Given a continuous linear functional f : V → R on an inner product space V .
We first want to “approximate” it by inner product with a vector. How does one
find a w so that the linear functional associated with w is “close” to f?

Exercise: Given any ε > 0, there is a unit vector uε so that f(uε) > ‖f‖ − ε.

Putting wε = f(uµ)uµ where µ is chosen suitably, we can prove:

Exercise: Given any ε > 0, there is a vector wε so that f(wε) and ‖wε‖2 lie in
the interval

[
‖f‖2 − ε, ‖f‖2].

Let W be a finite dimensional subspace of V which contains wε. By an earlier
exercise we know that there is a vector w1 in W such that f(w) = 〈w,w1〉 for
all w in W . We then have ‖w1‖ ≤ ‖f‖. Thus, ‖w1‖2, ‖wε‖2 and 〈wε, w1〉 all lie
in the interval

[
‖f‖2 − ε, ‖f‖2]. We can thus apply the exercise of the previous

subsection to show that ‖w1−wε‖2 < 4ε. Since f(w) = 〈w,w1〉 for w in W , this
also shows that

|f(w)− 〈w,wε〉| < 4ε‖w‖ for w ∈W
Since any vector v in V lies in some such finite dimensional W , it follows that f
is approximated to an error of at most 4ε by wε.

Exercise: Complete the argument above to show that for any v in W we have

|f(v)− 〈v, wε〉| < 4ε‖v‖

We can now create a sequence vn = w1/n of vectors in V and show that it is a
Cauchy sequence as before. If V is a Hilbert space, then this sequence converges
to a vector vf for which f(v) = 〈v, vf 〉 for every v in V .
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A less “constructive” and more conceptual argument is as follows. Given a
continuous linear functional f : H → R, we want a vector vf ∈ H such that
f(v) = 〈v, vf 〉 for all v in H. If f = 0 there is nothing to prove. Otherwise, let v0
be such that f(v0) 6= 0. Secondly, let W be the collection of vectors w ∈ H such
that f(w) = 0. Since W is closed (f is continuous!), there is a (unique) vector
v1 ∈ W such that v0 − v1 is orthogonal to W . Note that f(v0 − v1) = f(v0)
since f(v1) = 0. Replacing v0 by v0 − v1, we may assume that v0 is orthogonal
to W . Secondly, we note that v0 6= 0 since f(v0) 6= 0. So we note that

f(v0) = 〈v0,
f(v0)
‖v0‖2 · v0〉

So if vf = f(v0)
‖v0‖2 · v0, then we can prove:

Exercise: Check that f(v) = 〈v, vf 〉 for every v in V . (Hint: Write v as w+b ·v0
for w in W using the orthogonality of W and v0.)
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